Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Membr Biol ; 154(2): 131-41, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8929287

ABSTRACT

The unicellular protozoan parasite, Crithidia luciliae, responded to osmotic swelling by undergoing a regulatory volume decrease. This process was accompanied by the efflux of amino acids (predominantly alanine, proline and glycine). The relative loss of the electroneutral amino acids proline, valine, alanine and glycine was greater than that for the anionic amino acid, glutamate; there was negligible loss of the cationic amino acids, lysine, arginine and ornithine. The characteristics of amino acid release were investigated using a radiolabeled form of the nonmetabolized alanine analogue alpha-aminoisobutyrate. alpha-Aminoisobutyrate efflux was activated within a few seconds of a reduction of the osmolality, and inactivated rapidly (again within a few seconds) on restoration of isotonicity. The initial rate of efflux of alpha-aminoisobutyrate from cells in hypotonic medium was unaffected by the extracellular amino acid concentration. Hypotonically activated alpha-aminoisobutyrate efflux (as well as the associated regulatory volume decrease) was inhibited by the sulfhydryl reagent N-ethylmaleimide but was not inhibited by a range of anion transport blockers. As in the efflux experiments, unidirectional influx rates for alpha-aminoisobutyrate increased markedly following reduction of the osmolality, consistent with the swelling-activated amino acid release mechanism allowing the flux of solutes in both directions. Hypotonically activated alpha-aminoisobutyrate influx showed no tendency to saturate up to an extracellular concentration of 50 mM. The functional characteristics of the amino acid release mechanism are those of a channel, with a preference for electroneutral and anionic amino acids over cationic amino acids. However, the pharmacology of the system differs from that of the anion-selective channels that are thought to mediate the volume-regulatory efflux of organic osmolytes from vertebrate cells.


Subject(s)
Amino Acids/metabolism , Crithidia/metabolism , Osmotic Pressure , Aminoisobutyric Acids/metabolism , Animals , Anions/metabolism , Hypotonic Solutions/pharmacology , In Vitro Techniques , Ion Transport/drug effects
2.
J Membr Biol ; 149(2): 103-11, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8834117

ABSTRACT

Osmotic swelling of fish erythrocytes activates a broad-specificity permeation pathway that mediates the volume-regulatory efflux of taurine and other intracellular osmolytes. This pathway is blocked by inhibitors of the erythrocyte band 3 anion exchanger, raising the possibility that band 3 is involved in the volume-regulatory response. In this study of eel erythrocytes, a quantitative comparison of the pharmacology of swelling-activated taurine transport with that of band 3-mediated SO4(2-) transport showed there to be significant differences between them. N-ethylmaleimide and quinine were effective inhibitors of swelling-activated taurine transport but caused little, if any, inhibition of band 3. Conversely, DIDS was a more potent inhibitor of band 3-mediated SO4(2-) flux than of swelling-activated taurine transport. In cells in isotonic medium, pretreated then co-incubated with 0.1 mM DIDS, the band 3-mediated transport of SO4(2-) and Cl- was reduced to a low level. Exposure of these cells to a hypotonic medium containing 0.1 mM DIDS was followed by the activation of a Cl- permeation pathway showing the same inhibitor sensitivity as swelling-activated taurine transport. The data are consistent with swelling-activated transport of taurine and Cl- being via a common pathway. A comparison of the swelling-activated transport rates for taurine and Cl- with those for several other solutes was consistent with the hypothesis that this pathway is an anion-selective channel, similar to those that mediate the volume-regulatory efflux of Cl- and organic osmolytes from mammalian cells.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/metabolism , Erythrocytes/metabolism , Ion Channels/metabolism , Taurine/metabolism , Animals , Anions , Biological Transport , Cells, Cultured , Chlorides/metabolism , Eels , Erythrocytes/cytology , Solutions
3.
Am J Physiol ; 270(1 Pt 2): R61-70, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8769785

ABSTRACT

Following osmotic swelling, erythrocytes from the European eel, Anguilla anguilla, underwent a regulatory volume decrease. This was prevented by replacement of Na+ with K+ in the suspending medium, consistent with a role for the (normally outward) electrochemical K+ gradient in the volume-regulatory response. The effect of cell swelling on K- transport in these cells was investigated using 86Rb+ as a tracer for K+. Osmotic swelling resulted in an increase in ouabain-insensitive K+ transport that was highest for cells in Cl- and Br- media but which was also significant in I- and NO3- media. Treatment of eel erythrocytes suspended in isotonic Cl- or Br- (but not I- or NO3-) media with the sulfhydryl reagent N-ethylmaleimide (NEM) resulted in a large increase in K+ transport. A quantitative comparison of the pharmacological properties of the "Cl(-)-dependent" NEM-activated pathway with those of the "Cl(-)-independent" pathway mediating swelling-activated K+ transport in cells in Cl(-)-free (NO3- containing) media showed there to be significant differences between them. By contrast, the pharmacological properties of the Cl(-)-independent swelling-activated K+ pathway were indistinguishable from those of the pathway responsible for the swelling-activated transport of taurine, the major organic osmolyte in these cells. A pharmacological analysis of ouabain-insensitive K+ transport in cells swollen in a hypotonic Cl(-)-containing medium showed there to be two components, one with the characteristics of the NEM-activated system, the other showing the characteristics of the Cl(-)-independent swelling-activated pathway. The data are consistent with the presence of two functionally distinct swelling-activated K+ transport mechanisms in eel erythrocytes: a KCl cotransporter that is activated under isotonic conditions by NEM and a Cl(-)-independent, broad-specificity channel that accommodates a diverse range of organic and inorganic solutes.


Subject(s)
Anguilla/blood , Body Water/metabolism , Erythrocytes/metabolism , Potassium/metabolism , Animals , Biological Transport/drug effects , Chlorides/physiology , Ethylmaleimide/pharmacology , Ions , Osmosis
SELECTION OF CITATIONS
SEARCH DETAIL
...