Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36015544

ABSTRACT

Biocompatible electrically conducting chitosan-based films filled with single-wall carbon nanotubes were obtained. Atomic force microscopic studies of the free surface topography revealed a change in the morphology of chitosan films filled with single-wall carbon nanotubes. Introducing 0.5 wt.% of single-wall carbon nanotubes into chitosan results in an increase in tensile strength of the films (up to ~180 MPa); the tensile strain values also rise up to ~60%. It was demonstrated that chitosan films containing 0.1-3.0 wt.% of single-wall carbon nanotubes have higher conductivity (10 S/m) than pure chitosan films (10-11 S/m). The investigation of electrical stimulation of human dermal fibroblasts on chitosan/single-wall carbon nanotubes film scaffolds showed that the biological effect of cell electrical stimulation depends on the content of single-walled carbon nanotubes in the chitosan matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...