Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(19): 8604-8614, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696260

ABSTRACT

The nickel-rich region of the system Ce-Ni-Si has been reinvestigated utilizing X-ray single-crystal, powder, and electron diffraction as well as electron microprobe and thermal analyses. Two novel hexagonal compounds, τ-Ce20+xNi36+ySi30-z and τ'-Ce30+xNi50+ySi42-z, were identified. The crystal structure of τ-Ce20+xNi36+ySi30-z was derived from single-crystal X-ray diffraction and found to be isotypic with the Sm10Ni20.8P15-type structure (S.G. P63/m, x = 1.8, y = 3.0, z = 1.8, a = 2.07156(2) nm, c = 0.39990(1) nm, RF = 0.048). Rietveld refinement of τ'-Ce30+xNi50+ySi42-z revealed isotypism with Tb15Ni28P21 (S.G. P63/m, a = 2.46926(13) nm, c = 0.40019(3) nm, RF = 0.058). The compound Ce3Ni4Si2 from X-ray single-crystal analysis was found to crystallize in a novel structure type with monoclinic unit cells (S.G. C2/c, a = 1.54708(3) nm, b = 0.58677(1) nm, c = 0.74331(1) nm, ß = 102.985(1)°, RF = 0.017). This compound belongs to a new homologue series in the RE-Ni-Si system (RE = La and Ce) with general formula of RE(3×2n)Ni(3×2n + 1)Si(2n+1); n = 0,1, ..., ∞. The crystal structure of this series is characterized by alternating numbers (2n) of corner-sharing Si-polyhedral blocks sandwiched between zigzag nickel chains. Higher-order members of this series are produced by the formation of more corner-sharing Si-polyhedral blocks due to removal of nickel chains.

2.
Materials (Basel) ; 14(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396188

ABSTRACT

Three Fe-based ribbon-type samples prepared by a conventional planar flow casting process are studied from the viewpoint of the amorphous Fe80Si4B16 and partially surface crystallized Fe80Si10B10, and Fe80.5Nb6.9B12.6, microstructures. Surface magnetic properties are investigated by magneto-optical Kerr microscopy, allowing the measurement of a local hysteresis loop from a selected area on the ribbon surface, and simultaneously, a domain structure corresponding to a definite point at the loop. For an amorphous sample, the changes in the slopes of hysteresis loops are related either to the size of the selected surface area, from which the loop is measured, or to the type, width, and movement of magnetic domains through this area. In the first case, the resizing of the area simulates an effect of changing the diameter of the incident laser beam on the magneto-optical properties of the ribbon. In the latter case, the observed wide-curved and fingerprint domains are responsible for markedly different shapes of the hysteresis loops at lower magnetic fields. If the surface is crystallized, the magnetic properties are more homogenous, showing typical one-jump magnetization reversal with less dependence on the size of the surface area. The magneto-optical experiments are completed by transmission electron microscopy and magnetic force microscopy.

3.
Inorg Chem ; 58(22): 15246-15254, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31651156

ABSTRACT

As nanoparticle preparation methods employing bottom-up procedures rely on the use of molecular precursors, the chemical composition and bonding of these precursors have a decisive effect on nanoparticle formation and their resulting morphology and properties. We synthesized the Cu(I) complexes [Cu(PPh3)2(bea)] (1, bea = benzoate) and [Cu(PPh3)3(Hphta)] (2, phta = phthalate) by reducing the corresponding Cu(II) mono- and dicarboxylates with triphenylphosphine. We characterized 1 and 2 by single-crystal X-ray diffraction analysis, elemental analyses, infrared and nuclear magnetic resonance spectroscopy, and mass spectrometry and obtained complete information about their structures in the solid state and in solution. Also, we examined their thermal stability in oleylamine and determined their decomposition temperatures to be used as the minimal reaction temperature in metal nanoparticle synthesis. The complexes 1 and 2 differ in the number of reducing PPh3 ligands and the strength of carboxylate bonding to the Cu(I) center. Therefore, we employed them in combination with [Ag(NH2C12H25)2]NO3 as molecular precursors in the solvothermal hot injection synthesis of AgCu nanoalloys in oleylamine and demonstrated their influence on the elemental distribution, phase composition, particle size distribution, shape, morphology, and optical properties of the resulting nanoparticles. The nanoalloy particles from the benzoate complex 1 were oblate and polydisperse and exhibited two surface plasmons at 393 and 569 nm, which is caused by their Janus-type structure. The nanoparticles prepared from the phthalate complex 2 were round and monodisperse and exhibited one plasmon at 413 nm, as they formed an AgCu solid solution with a random distribution of the elements in a particle.

4.
Materials (Basel) ; 12(5)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823413

ABSTRACT

Microstructural and magnetic properties of the X2YZ, namely Fe2MnSi and Fe2MnAl, Heusler alloys have been studied from the viewpoint of technology for their production and for the Z element effect. First, arc melting was applied to produce button-type ingots from which samples in a form of 500 µm thick discs were cut. Second, planar flow casting technology yielded samples in a ribbon-form 2 mm wide and 20 µm thick. The checked area chemical compositions were in agreement with the nominal ones. Nevertheless, the darker square objects and smaller bright objects observed at the wheel side of the Fe2MnSi ribbon sample yielded higher Mn content at the expense of Fe. The X-ray diffraction patterns of all samples have indicated L21 structure with lattice parameters, 0.567 (1) nm for Fe2MnSi and 0.584 (1) nm for Fe2MnAl, being within an experimental error independent of production technology. On the other hand, the technology has markedly influenced the microstructure clearly pointing to the larger size of grains and grain boundaries in the disc samples. From the magnetic viewpoint, both alloys are paramagnetic at room temperature without visible influence of their production. On the contrary, the low-temperature behavior of the microscopic hyperfine parameters and the macroscopic magnetic parameters exhibits differences affected by both chemical composition and microstructure.

5.
RSC Adv ; 9(37): 21451-21459, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-35521323

ABSTRACT

The temperature and phase stability of p-type skutterudites, DD0.7Fe3CoSb12, manufactured via various preparation techniques, all exhibiting a high ZT-level, have been studied by means of thermal analysis and Knudsen effusion mass spectrometry. The results from phase transformation measurements and characteristics of the evaporation of antimony, as the volatile element, supported by microstructure observations and by diffusion profiles are summarized and discussed in view of a full understanding of the degradation processes and knowledge of the long term operation stability of the bulk and nano-structured thermoelectrics studied. It was found out that the antimony evaporation is a complex diffusion kinetic process resulting in a stable Sb level dependent on the preparation route. The studied p-type skutterudites, DD0.7Fe3CoSb12, have proven their long term stability in thermoelectric devices at a maximum operation temperature of 600 °C. Complementary data on the structural, physical and mechanical properties of the materials are presented as well.

6.
Phys Chem Chem Phys ; 17(42): 28277-85, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-25929324

ABSTRACT

Solvothermal synthesis was used for Ag-Cu nanoparticle (NP) preparation from metallo-organic precursors. The detailed NP characterization was performed to obtain information about nanoparticle microstructure and both phase and chemical compositions. The resulting nanoparticles exhibited chemical composition inside a FCC_Ag + FCC_Cu two-phase region. The microstructure study was performed by various methods of electron microscopy including high-resolution transmission electron microscopy (HRTEM) at an atomic scale. The HRTEM and X-ray diffraction studies showed that the prepared nanoparticles form the face centred cubic (FCC) crystal lattice where the silver atoms are randomly mixed with copper. The CALPHAD approach was used for predicting the phase diagram of the Ag-Cu system in both macro- and nano-scales. The predicted spinodal decomposition of the metastable Ag-Cu nanoparticles was experimentally induced by heating on an X-ray powder diffractometer (HT XRD). The nucleation of the Cu-rich phase was detected and its growth was studied. Changes in the Ag-rich phase were observed in situ by X-ray diffraction under vacuum. The heat treatment was conducted at different maximum temperatures up to 450 °C and the resulting particle product was analysed. The experiments were complemented by differential scanning calorimetry (DSC) measurements up to liquidus temperature. The start temperatures of the spinodal phase transformation and particle aggregation were evaluated.

7.
Phys Chem Chem Phys ; 17(5): 3715-22, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25556702

ABSTRACT

The best p-type skutterudites with ZT > 1.1 so far are didymium (DD) filled, Fe/Co substituted, Sb-based skutterudites. DD0.68Fe3CoSb12 was prepared using an annealing-reacting-melting-quenching technique followed by ball milling and hot pressing. After severe plastic deformation via high-pressure torsion (HPT), no phase changes but particular structural variations were achieved, leading to modified transport properties with higher ZT values. Although after measurement-induced heating some of the HPT induced defects were annealed out, a still attractive ZT-value was preserved. In this paper we focus on explanations for these changes via TEM investigations, Raman spectroscopy and texture measurements. The grain sizes and dislocation densities, evaluated from TEM images, showed that (i) the majority of cracks generated during high-pressure torsion are healed during annealing, leaving only small pores, that (ii) the grains have grown, and that (iii) the dislocation density is decreased. While Raman spectra indicate that after HPT processing and annealing the vibration modes related to the shorter Sb-Sb bonds in the Sb4 rings are more affected than those related to the longer Sb-Sb bonds, almost no visible changes were observed in the pole intensity and/or orientation.

8.
Ultramicroscopy ; 108(7): 671-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18068903

ABSTRACT

In this article results of a comparison of two NSOM probe characterization methods are presented. Scanning electron microscopy analysis combined with electromagnetic field modeling using the finite difference in time domain method are compared with measured far-field radiation diagrams of NSOM probes. It is shown that measurement of far-field radiation diagrams can be an efficient tool for daily checking of the NSOM probes quality. Moreover, it is shown that the inner probe geometry has large influence on the directional radiation of an NSOM probe and the far-field radiation diagram can be used as a simple method to distinguish between different probe geometries.

SELECTION OF CITATIONS
SEARCH DETAIL
...