Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(5): 1736-1751, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38303928

ABSTRACT

The controlled delocalization of molecular excitons remains an important goal towards the application of organic chromophores in processes ranging from light-initiated chemical transformations to classical and quantum information processing. In this study, we present a methodology to couple optical and magnetic spectroscopic techniques and assess the delocalization of singlet and triplet excitons in model molecular chromophores. By comparing the steady-state and time-resolved optical spectra of Zn-porphyrin monomers and weakly coupled dimers, we show that we can use the identity of substituents bound at specific positions of the macromolecules' rings to control the inter-ring delocalization of singlet excitons stemming from their B states through acetylene bridges. While broadened steady-state absorption spectra suggest the presence of delocalized B state excitons in mesityl-substituted Zn-tetraphenyl porphyrin dimers (Zn2U-D), we confirm this conclusion by measuring an enhanced ultrafast non-radiative relaxation from these inter-ring excitonic states to lower lying electronic states relative to their monomer. In contrast to the delocalized nature of singlet excitons, we use time-resolved EPR and ENDOR spectroscopies to show that the triplet states of the Zn-porphyrin dimers remain localized on one of the two macrocyclic sub-units. We use the analysis of EPR and ENDOR measurements on unmetallated model porphyrin monomers and dimers to support this conclusion. The results of DFT calculations also support the interpretation of localized triplet states. These results demonstrate researchers cannot conclude triplet excitons delocalize in macromolecular based on the presence of spatially extended singlet excitons, which can help in the design of chromophores for application in spin conversion and information processing technologies.

2.
J Phys Chem Lett ; 15(9): 2405-2418, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38394364

ABSTRACT

Maximizing the coherence between the constituents of molecular materials remains a crucial goal toward the implementation of these systems into everyday optoelectronic technologies. Here we experimentally assess the ability of strong light-matter coupling in the collective limit to reduce energetic disorder using porphyrin-based chromophores in Fabry-Pérot (FP) microresonator structures. Following characterization of cavity polaritons formed from chemically distinct porphyrin dimers, we find that the peaks corresponding to the lower polariton (LP) state in each sample do not possess widths consistent with conventional theories. We model the behavior of the polariton peak widths effectively using the results of spectroscopic theory. We correlate differences in the suppression of excitonic energetic disorder between our samples with microscopic light-matter interactions and propose that the suppression stems from photonic exchange. Our results demonstrate that cavity polariton formation can suppress disorder and show researchers how to design coherence into hybrid molecular material systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...