Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 40(21): 5448-60, 2001 Oct 08.
Article in English | MEDLINE | ID: mdl-11578193

ABSTRACT

Laser-ablated thorium atoms have been reacted with CO molecules during condensation in excess neon. Absorptions at 617.7 and 812.2 cm(-1) are assigned to Th-C and Th-O stretching vibrations of the CThO molecule. Absorptions at 2048.6, 1353.6, and 822.5 cm(-1) are assigned to the OThCCO molecule, which is formed by CO addition to CThO and photochemical rearrangement of Th(CO)(2). The OThCCO molecule undergoes further photoinduced rearrangement to OTh(eta(3)-CCO), which is characterized by C-C, C-O, and Th-O stretching vibrations at 1810.8, 1139.2, and 831.6 cm(-1). The Th(CO)(n) (n = 1-6) complexes are formed on deposition or on annealing. Evidence is also presented for the CThO(-) and Th(CO)(2)(-) anions, which are formed by electron capture of neutral molecules. Relativistic density functional theory (DFT) calculations of the geometry structures, vibrational frequencies, and infrared intensities strongly support the experimental assignments. It is found that CThO is an unprecedented actinide-containing carbene molecule with a triplet ground state and an unusual bent structure ( angleCThO = 109 degrees ). The OThCCO molecule has a bent structure while its rearranged product OTh(eta(3)-CCO) is found to have a unique exocyclic structure with side-bonded CCO group. We also find that both Th(CO)(2) and Th(CO)(2)(-) are, surprisingly, highly bent, with the angleC-Th-C bond angle being close to 50 degrees; the unusual geometries are the result of extremely strong Th-to-CO back-bonding, which causes significant three-centered bonding among the Th atom and the two C atoms.

2.
Inorg Chem ; 40(6): 1376-9, 2001 Mar 12.
Article in English | MEDLINE | ID: mdl-11300845

ABSTRACT

The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.

3.
Chem Commun (Camb) ; (22): 2382-3, 2001 Nov 21.
Article in English | MEDLINE | ID: mdl-12240086

ABSTRACT

The electronic structures of oxalate-bridged, quadruply-bonded dimolybdenum and ditungsten compounds have been investigated by a variety of computational methods employing density function theory (gradient corrected and time-dependent) which reveal the consequences of strong mixing of M2 delta and oxalate pi orbitals within extended chains and cyclic structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...