Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 11: 1842, 2020.
Article in English | MEDLINE | ID: mdl-32849084

ABSTRACT

Facial information is a powerful channel for human-to-human communication. Characteristically, faces can be defined as biological objects that are four-dimensional (4D) patterns, whereby they have concurrently a spatial structure and surface as well as temporal dynamics. The spatial characteristics of facial objects contain a volume and surface in three dimensions (3D), namely breadth, height and importantly, depth. The temporal properties of facial objects are defined by how a 3D facial structure and surface evolves dynamically over time; where time is referred to as the fourth dimension (4D). Our entire perception of another's face, whether it be social, affective or cognitive perceptions, is therefore built on a combination of 3D and 4D visual cues. Counterintuitively, over the past few decades of experimental research in psychology, facial stimuli have largely been captured, reproduced and presented to participants with two dimensions (2D), while remaining largely static. The following review aims to advance and update facial researchers, on the recent revolution in computer-generated, realistic 4D facial models produced from real-life human subjects. We delve in-depth to summarize recent studies which have utilized facial stimuli that possess 3D structural and surface cues (geometry, surface and depth) and 4D temporal cues (3D structure + dynamic viewpoint and movement). In sum, we have found that higher-order perceptions such as identity, gender, ethnicity, emotion and personality, are critically influenced by 4D characteristics. In future, it is recommended that facial stimuli incorporate the 4D space-time perspective with the proposed time-resolved methods.

2.
Front Hum Neurosci ; 11: 495, 2017.
Article in English | MEDLINE | ID: mdl-29075185

ABSTRACT

Low spatial frequency (LSF) visual information is extracted rapidly from fearful faces, suggesting magnocellular involvement. Autistic phenotypes demonstrate altered magnocellular processing, which we propose contributes to a decreased P100 evoked response to LSF fearful faces. Here, we investigated whether rapid processing of fearful facial expressions differs for groups of neurotypical adults with low and high scores on the Autistic Spectrum Quotient (AQ). We created hybrid face stimuli with low and high spatial frequency filtered, fearful, and neutral expressions. Fearful faces produced higher amplitude P100 responses than neutral faces in the low AQ group, particularly when the hybrid face contained a LSF fearful expression. By contrast, there was no effect of fearful expression on P100 amplitude in the high AQ group. Consistent with evidence linking magnocellular differences with autistic personality traits, our non-linear VEP results showed that the high AQ group had higher amplitude K2.1 responses than the low AQ group, which is indicative of less efficient magnocellular recovery. Our results suggest that magnocellular LSF processing of a human face may be the initial visual cue used to rapidly and automatically detect fear, but that this cue functions atypically in those with high autistic tendency.

SELECTION OF CITATIONS
SEARCH DETAIL
...