Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
2.
Front Plant Sci ; 14: 1166282, 2023.
Article in English | MEDLINE | ID: mdl-37457352

ABSTRACT

Fusarium head blight (FHB) is a highly destructive fungal disease of wheat to which host resistance is quantitatively inherited and largely influenced by the environment. Resistance to FHB has been associated with taller height and later maturity; however, a further understanding of these relationships is needed. An association mapping panel (AMP) of 192 predominantly Canadian spring wheat was genotyped with the wheat 90K single-nucleotide polymorphism (SNP) array. The AMP was assessed for FHB incidence (INC), severity (SEV) and index (IND), days to anthesis (DTA), and plant height (PLHT) between 2015 and 2017 at three Canadian FHB-inoculated nurseries. Seven multi-environment trial (MET) datasets were deployed in a genome-wide association study (GWAS) using a single-locus mixed linear model (MLM) and a multi-locus random SNP-effect mixed linear model (mrMLM). MLM detected four quantitative trait nucleotides (QTNs) for INC on chromosomes 2D and 3D and for SEV and IND on chromosome 3B. Further, mrMLM identified 291 QTNs: 50 (INC), 72 (SEV), 90 (IND), 41 (DTA), and 38 (PLHT). At two or more environments, 17 QTNs for FHB, DTA, and PLHT were detected. Of these 17, 12 QTNs were pleiotropic for FHB traits, DTA, and PLHT on chromosomes 1A, 1D, 2D, 3B, 5A, 6B, 7A, and 7B; two QTNs for DTA were detected on chromosomes 1B and 7A; and three PLHT QTNs were located on chromosomes 4B and 6B. The 1B DTA QTN and the three pleiotropic QTNs on chromosomes 1A, 3B, and 6B are potentially identical to corresponding quantitative trait loci (QTLs) in durum wheat. Further, the 3B pleiotropic QTN for FHB INC, SEV, and IND co-locates with TraesCS3B02G024900 within the Fhb1 region on chromosome 3B and is ~3 Mb from a cloned Fhb1 candidate gene TaHRC. While the PLHT QTN on chromosome 6B is putatively novel, the 1B DTA QTN co-locates with a disease resistance protein located ~10 Mb from a Flowering Locus T1-like gene TaFT3-B1, and the 7A DTA QTN is ~5 Mb away from a maturity QTL QMat.dms-7A.3 of another study. GWAS and QTN candidate genes enabled the characterization of FHB resistance in relation to DTA and PLHT. This approach should eventually generate additional and reliable trait-specific markers for breeding selection, in addition to providing useful information for FHB trait discovery.

3.
Front Plant Sci ; 14: 1134132, 2023.
Article in English | MEDLINE | ID: mdl-37284725

ABSTRACT

Fusarium head blight (FHB) has rapidly become a major challenge to successful wheat production and competitive end-use quality in western Canada. Continuous effort is required to develop germplasm with improved FHB resistance and understand how to incorporate the material into crossing schemes for marker-assisted selection and genomic selection. The aim of this study was to map quantitative trait loci (QTL) responsible for the expression of FHB resistance in two adapted cultivars and to evaluate their co-localization with plant height, days to maturity, days to heading, and awnedness. A large doubled haploid population of 775 lines developed from cultivars Carberry and AC Cadillac was assessed for FHB incidence and severity in nurseries near Portage la Prairie, Brandon, and Morden in different years, and for plant height, awnedness, days to heading, and days to maturity near Swift Current. An initial linkage map using a subset of 261 lines was constructed using 634 polymorphic DArT and SSR markers. QTL analysis revealed five resistance QTL on chromosomes 2A, 3B (two loci), 4B, and 5A. A second genetic map with increased marker density was constructed using the Infinium iSelect 90k SNP wheat array in addition to the previous DArT and SSR markers, which revealed two additional QTL on 6A and 6D. The complete population was genotyped, and a total of 6,806 Infinium iSelect 90k SNP polymorphic markers were used to identify 17 putative resistance QTL on 14 different chromosomes. As with the smaller population size and fewer markers, large-effect QTL were detected on 3B, 4B, and 5A that were consistently expressed across environments. FHB resistance QTL were co-localized with plant height QTL on chromosomes 4B, 6D, and 7D; days to heading on 2B, 3A, 4A, 4B, and 5A; and maturity on 3A, 4B, and 7D. A major QTL for awnedness was identified as being associated with FHB resistance on chromosome 5A. Nine small-effect QTL were not associated with any of the agronomic traits, whereas 13 QTL that were associated with agronomic traits did not co-localize with any of the FHB traits. There is an opportunity to select for improved FHB resistance within adapted cultivars by using markers associated with complementary QTL.

4.
Front Genet ; 14: 1125940, 2023.
Article in English | MEDLINE | ID: mdl-37007938

ABSTRACT

In the present era of climate instability, Canadian wheat production has been frequently affected by abiotic stresses and by dynamic populations of pathogens and pests that are more virulent and aggressive over time. Genetic diversity is fundamental to guarantee sustainable and improved wheat production. In the past, the genetics of Brazilian cultivars, such as Frontana, have been studied by Canadian researchers and consequently, Brazilian germplasm has been used to breed Canadian wheat cultivars. The objective of this study was to characterize a collection of Brazilian germplasm under Canadian growing conditions, including the reaction of the Brazilian germplasm to Canadian isolates/pathogens and to predict the presence of certain genes in an effort to increase genetic diversity, improve genetic gain and resilience of Canadian wheat. Over 100 Brazilian hard red spring wheat cultivars released from 1986 to 2016 were evaluated for their agronomic performance in eastern Canada. Some cultivars showed good adaptability, with several cultivars being superior or statistically equal to the highest yielding Canadian checks. Several Brazilian cultivars had excellent resistance to leaf rust, even though only a few of these tested positive for the presence of either Lr34 or Lr16, two of the most common resistance genes in Canadian wheat. Resistance for stem rust, stripe rust and powdery mildew was variable among the Brazilian cultivars. However, many Brazilian cultivars had high levels of resistance to Canadian and African - Ug99 strains of stem rust. Many Brazilian cultivars had good Fusarium head blight (FHB) resistance, which appears to be derived from Frontana. In contrast FHB resistance in Canadian wheat is largely based on the Chinese variety, Sumai-3. The Brazilian germplasm is a valuable source of semi-dwarf (Rht) genes, and 75% of the Brazilian collection possessed Rht-B1b. Many cultivars in the Brazilian collection were found to be genetically distinct from Canadian wheat, making them a valuable resource to increase the disease resistance and genetic variability in Canada and elsewhere.

5.
R Soc Open Sci ; 8(2): 201458, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33972856

ABSTRACT

A large portion of the terrestrial vegetation carbon stock is stored in the above-ground biomass (AGB) of tropical forests, but the exact amount remains uncertain, partly owing to the lack of measurements. To date, accessible peer-reviewed data are available for just 10 large tropical trees in the Amazon that have been harvested and directly measured entirely via weighing. Here, we harvested four large tropical rainforest trees (stem diameter: 0.6-1.2 m, height: 30-46 m, AGB: 3960-18 584 kg) in intact old-growth forest in East Amazonia, and measured above-ground green mass, moisture content and woody tissue density. We first present rare ecological insights provided by these data, including unsystematic intra-tree variations in density, with both height and radius. We also found the majority of AGB was usually found in the crown, but varied from 42 to 62%. We then compare non-destructive approaches for estimating the AGB of these trees, using both classical allometry and new lidar-based methods. Terrestrial lidar point clouds were collected pre-harvest, on which we fitted cylinders to model woody structure, enabling retrieval of volume-derived AGB. Estimates from this approach were more accurate than allometric counterparts (mean tree-scale relative error: 3% versus 15%), and error decreased when up-scaling to the cumulative AGB of the four trees (1% versus 15%). Furthermore, while allometric error increased fourfold with tree size over the diameter range, lidar error remained constant. This suggests error in these lidar-derived estimates is random and additive. Were these results transferable across forest scenes, terrestrial lidar methods would reduce uncertainty in stand-scale AGB estimates, and therefore advance our understanding of the role of tropical forests in the global carbon cycle.

6.
Theor Appl Genet ; 134(2): 647-660, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33200319

ABSTRACT

KEY MESSAGE: A major QTL for oviposition deterrence to orange wheat blossom midge was detected on chromosome 1A in the Canadian breeding line BW278 that was inherited from the Chinese variety Sumai-3. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin, Diptera: Cecidomyiidae) is an important insect pest of wheat (Triticum aestivum L.) that reduces both grain yield and quality. Oviposition deterrence results in a reduction of eggs deposited on spikes relative to that observed on a wheat line preferred by OWBM. Quantification of oviposition deterrence is labor-intensive, so wheat breeders require efficient DNA markers for the selection of this trait. The objective of this study was to identify quantitative trait loci (QTL) for oviposition deterrence in a doubled haploid (DH) population developed from the spring wheat cross Superb/BW278. The DH population and check varieties were evaluated for OWBM kernel damage from five field nurseries over three growing seasons. QTL analysis identified major effect loci on chromosomes 1A (QSm.mrc-1A) and 5A (QSm.mrc-5A). Reduced kernel damage was contributed by BW278 at QSm.mrc-1A and Superb at QSm.mrc-5A. QSm.mrc-1A mapped to the approximate location of the oviposition deterrence QTL previously found in the American variety Reeder. However, haplotype analysis revealed that BW278 inherited this oviposition deterrence allele from the Chinese spring wheat variety Sumai-3. QSm.mrc-5A mapped to the location of awn inhibitor gene B1, suggesting that awns hinder OWBM oviposition. Single-nucleotide polymorphisms (SNPs) were identified for predicting the presence or absence of QSm.mrc-1A based upon haplotype. Functional annotation of candidate genes in 1A QTL intervals revealed eleven potential candidate genes, including a gene involved in terpenoid biosynthesis. SNPs for QSm.mrc-1A and fully awned spikes provide a basis for the selection of oviposition deterrence to OWBM.


Subject(s)
Ceratopogonidae/anatomy & histology , Ceratopogonidae/physiology , Disease Resistance/genetics , Genes, Plant , Oviposition , Plant Diseases/genetics , Triticum/genetics , Animals , Chromosome Mapping , Disease Resistance/immunology , Haploidy , Phenotype , Plant Breeding , Plant Diseases/immunology , Plant Diseases/parasitology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/parasitology
7.
Sci Rep ; 10(1): 16721, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060622

ABSTRACT

Large trees are disproportionately important in terms of their above ground biomass (AGB) and carbon storage, as well as their wider impact on ecosystem structure. They are also very hard to measure and so tend to be underrepresented in measurements and models of AGB. We show the first detailed 3D terrestrial laser scanning (TLS) estimates of the volume and AGB of large coastal redwood Sequoia sempervirens trees from three sites in Northern California, representing some of the highest biomass ecosystems on Earth. Our TLS estimates agree to within 2% AGB with a species-specific model based on detailed manual crown mapping of 3D tree structure. However TLS-derived AGB was more than 30% higher compared to widely-used general (non species-specific) allometries. We derive an allometry from TLS that spans a much greater range of tree size than previous models and so is potentially better-suited for use with new Earth Observation data for these exceptionally high biomass areas. We suggest that where possible, TLS and crown mapping should be used to provide complementary, independent 3D structure measurements of these very large trees.


Subject(s)
Biometry/methods , Ecological Parameter Monitoring/methods , Sequoia/growth & development , Biomass , Carbon/metabolism , Ecosystem , Forests , Lasers , Light , Sequoia/metabolism
8.
Sci Rep ; 10(1): 7567, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32372012

ABSTRACT

The durum wheat line DT696 is a source of moderate Fusarium head blight (FHB) resistance. Previous analysis using a bi-parental population identified two FHB resistance quantitative trait loci (QTL) on chromosome 5A: 5A1 was co-located with a plant height QTL, and 5A2 with a major maturity QTL. A Genome-Wide Association Study (GWAS) of DT696 derivative lines from 72 crosses based on multi-environment FHB resistance, plant height, and maturity phenotypic data was conducted to improve the mapping resolution and further elucidate the genetic relationship of height and maturity with FHB resistance. The Global Tetraploid Wheat Collection (GTWC) was exploited to identify durum wheat lines with DT696 allele and additional recombination events. The 5A2 QTL was confirmed in the derivatives, suggesting the expression stability of the 5A2 QTL in various genetic backgrounds. The GWAS led to an improved mapping resolution rendering the 5A2 interval 10 Mbp shorter than the bi-parental QTL mapping interval. Haplotype analysis using SNPs within the 5A2 QTL applied to the GTWC identified novel haplotypes and recombination breakpoints, which could be exploited for further improvement of the mapping resolution. This study suggested that GWAS of derivative breeding lines is a credible strategy for improving mapping resolution.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Quantitative Trait Loci , Recombination, Genetic , Triticum/genetics , Fusarium , Genetic Association Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Linkage Disequilibrium , Plant Diseases/microbiology , Quantitative Trait, Heritable , Selection, Genetic , Triticum/microbiology
9.
Front Plant Sci ; 11: 592064, 2020.
Article in English | MEDLINE | ID: mdl-33424887

ABSTRACT

Durum wheat is an economically important crop for Canadian farmers. Fusarium head blight (FHB) is one of the most destructive diseases that threatens durum production in Canada. FHB reduces yield and end-use quality and most commonly contaminates the grain with the fungal mycotoxin deoxynivalenol, also known as DON. Serious outbreaks of FHB can occur in durum wheat in Canada, and combining genetic resistance with fungicide application is a cost effective approach to control this disease. However, there is limited variation for genetic resistance to FHB in elite Canadian durum cultivars. To explore and identify useful genetic FHB resistance variation for the improvement of Canadian durum wheat, we assembled an association mapping (AM) panel of diverse durum germplasms and performed genome wide association analysis (GWAS). Thirty-one quantitative trait loci (QTL) across all 14 chromosomes were significantly associated with FHB resistance. On 3BS, a stable QTL with a larger effect for resistance was located close to the centromere of 3BS. Three haplotypes of Fhb1 QTL were identified, with an emmer wheat haplotype contributing to disease susceptibility. The large number of QTL identified here can provide a rich resource to improve FHB resistance in commercially grown durum wheat. Among the 31 QTL most were associated with plant height and/or flower time. QTL 1A.1, 1A.2, 3B.2, 5A.1, 6A.1, 7A.3 were associated with FHB resistance and not associated or only weakly associated with flowering time nor plant height. These QTL have features that would make them good targets for FHB resistance breeding.

10.
PLoS One ; 13(10): e0204362, 2018.
Article in English | MEDLINE | ID: mdl-30307951

ABSTRACT

Breeding for Fusarium head blight (FHB) resistance in durum wheat is complicated by the quantitative trait expression and narrow genetic diversity of available resources. High-density mapping of the FHB resistance quantitative trait loci (QTL), evaluation of their co-localization with plant height and maturity QTL and the interaction among the identified QTL are the objectives of this study. Two doubled haploid (DH) populations, one developed from crosses between Triticum turgidum ssp. durum lines DT707 and DT696 and the other between T. turgidum ssp. durum cv. Strongfield and T. turgidum ssp. carthlicum cv. Blackbird were genotyped using the 90K Infinium iSelect chip and evaluated phenotypically at multiple field FHB nurseries over years. A moderate broad-sense heritability indicated a genotype-by-environment interaction for the expression of FHB resistance in both populations. Resistance QTL were identified for the DT707 × DT696 population on chromosomes 1B, 2B, 5A (two loci) and 7A and for the Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B with the QTL on chromosome 1A and those on chromosome 5A being more consistently expressed over environments. FHB resistance co-located with plant height and maturity QTL on chromosome 5A and with a maturity QTL on chromosome 7A for the DT707 × DT696 population. Resistance also co-located with plant height QTL on chromosomes 2A and 3A and with maturity QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Additive × additive interactions were identified, for example between the two FHB resistance QTL on chromosome 5A for the DT707 × DT696 population and the FHB resistance QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Application of the Single Nucleotide Polymorphic (SNP) markers associated with FHB resistance QTL identified in this study will accelerate combining genes from the two populations.


Subject(s)
Disease Resistance/genetics , Fusarium , Plant Diseases/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Phenotype , Plant Breeding , Quantitative Trait Loci , Species Specificity , Triticum/anatomy & histology
11.
Carbon Balance Manag ; 13(1): 10, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29943069

ABSTRACT

BACKGROUND: Urban trees have long been valued for providing ecosystem services (mitigation of the "heat island" effect, suppression of air pollution, etc.); more recently the potential of urban forests to store significant above ground biomass (AGB) has also be recognised. However, urban areas pose particular challenges when assessing AGB due to plasticity of tree form, high species diversity as well as heterogeneous and complex land cover. Remote sensing, in particular light detection and ranging (LiDAR), provide a unique opportunity to assess urban AGB by directly measuring tree structure. In this study, terrestrial LiDAR measurements were used to derive new allometry for the London Borough of Camden, that incorporates the wide range of tree structures typical of an urban setting. Using a wall-to-wall airborne LiDAR dataset, individual trees were then identified across the Borough with a new individual tree detection (ITD) method. The new allometry was subsequently applied to the identified trees, generating a Borough-wide estimate of AGB. RESULTS: Camden has an estimated median AGB density of 51.6 Mg ha-1 where maximum AGB density is found in pockets of woodland; terrestrial LiDAR-derived AGB estimates suggest these areas are comparable to temperate and tropical forest. Multiple linear regression of terrestrial LiDAR-derived maximum height and projected crown area explained 93% of variance in tree volume, highlighting the utility of these metrics to characterise diverse tree structure. Locally derived allometry provided accurate estimates of tree volume whereas a Borough-wide allometry tended to overestimate AGB in woodland areas. The new ITD method successfully identified individual trees; however, AGB was underestimated by ≤ 25% when compared to terrestrial LiDAR, owing to the inability of ITD to resolve crown overlap. A Monte Carlo uncertainty analysis identified assigning wood density values as the largest source of uncertainty when estimating AGB. CONCLUSION: Over the coming century global populations are predicted to become increasingly urbanised, leading to an unprecedented expansion of urban land cover. Urban areas will become more important as carbon sinks and effective tools to assess carbon densities in these areas are therefore required. Using multi-scale LiDAR presents an opportunity to achieve this, providing a spatially explicit map of urban forest structure and AGB.

12.
PLoS One ; 11(6): e0156934, 2016.
Article in English | MEDLINE | ID: mdl-27336632

ABSTRACT

Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types.


Subject(s)
Ecosystem , Forests , Grassland , Africa , Biodiversity , Carbon/analysis , Carbon Cycle , Environmental Monitoring , Gabon , Geography , Plants , Soil
13.
PLoS One ; 10(10): e0139450, 2015.
Article in English | MEDLINE | ID: mdl-26431031

ABSTRACT

Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-ß-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as ß-glucanases.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Genes, Plant , Phaseolus/genetics , Polymorphism, Single Nucleotide , Alleles , Amino Acid Sequence , Base Sequence , Carrier Proteins/genetics , Genetic Association Studies , Genetic Linkage , Genetic Markers , Genotyping Techniques , Glycoside Hydrolases/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Protein-Tyrosine Kinases/genetics , Sequence Alignment , Sequence Homology , Species Specificity , Type C Phospholipases/genetics
14.
Genome ; 54(12): 993-1004, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22098475

ABSTRACT

Production of high-lutein maize grain is of particular interest as a value-added feed source to produce high-lutein eggs. In this paper, it is demonstrated that heterosis for total carotenoid concentration and for the ratio of lutein to zeaxanthin (L:Z ratio), or profile type, exists infrequently in yellow dent crosses. However, yellow dent inbred maize lines A619 and CG102, both possessing high-lutein profiles, produce F1 seed with a classic overdominant expression of lutein levels (i.e., 49 µg/g dry weight (DW) above the high-parent value). Reciprocal crosses of A619 and CG102 with one another and with two high-zeaxanthin (i.e., low lutein), high-carotenoid lines both suggest that the A619 and CG102 high-lutein phenotypes are achieved by different and complementary genotypes. The contribution of CG102 to the heterotic response was examined using a QTL-based approach that involved phenotyping the mapping population in a testcross to A619. Significant QTL were found at loci known to be involved in the carotenoid pathway but also at loci proximate to, but separate from, known carotenoid pathway steps. Exploiting an overdominant heterotic response for lutein and total carotenoids should be given strong consideration as a viable method of producing high-carotenoid hybrid maize lines.


Subject(s)
Carotenoids/metabolism , Chimera/genetics , Hybrid Vigor , Zea mays/genetics , Carotenoids/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Chromosomes, Plant/metabolism , Crosses, Genetic , Genetic Markers , Genotype , Inbreeding , Quantitative Trait Loci , Seeds/genetics , Seeds/metabolism , Xanthophylls/genetics , Xanthophylls/metabolism , Zea mays/metabolism , Zeaxanthins
15.
J Agric Food Chem ; 58(14): 8286-92, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20593834

ABSTRACT

High carotenoid maize is an ideal source of high value dietary carotenoids, especially lutein and zeaxanthin, in human and animal feed and has been proposed as a feedstock for high carotenoid egg production. A modified analytical method was demonstrated to have reliability, reproducibility, and improved run-time and separation of xanthophylls. This method was used to confirm the localization of carotenoids in endosperm and to determine the effects of drying and storage on carotenoid levels in maize grain. A preliminary trial using room temperature drying indicated that while carotenoid profiles remain stable during storage, carotenoid levels decrease significantly from initial levels between 3 and 6 months of storage, but then remain stable for another year. A more rigorous trial using three drying and storage regimes (freeze-drying and storage at -80 degrees C; room temperature drying and storage; 90 degrees C drying and room temperature storage) indicated that extreme caution is needed to maintain carotenoid levels in maize during handling and storage, but in situations where freeze-drying is not possible, high heat drying is no more detrimental than low heat drying.


Subject(s)
Carotenoids/analysis , Food Handling/methods , Plant Extracts/analysis , Zea mays/chemistry , Freeze Drying , Temperature
16.
Phytochem Anal ; 18(2): 161-9, 2007.
Article in English | MEDLINE | ID: mdl-17439018

ABSTRACT

A method was developed for the analysis of Vaccinium angustifolium Ait. (Lowbush blueberry), which is a widely used natural health product, particularly for the treatment of diabetic symptoms. While the anthocyanin content of the fruit has been well characterized, the chemistry of the vegetative parts used in supportive therapy for diabetes has been largely ignored. Using a metabolomics-based approach for compound identification with an emphasis on phenolic metabolites, a single HPLC-PAD-APCI/ MS method was developed for the separation and quantitation of the major metabolites found in the 95% ethanol extracts of leaf, stem, root and fruit. The leaf extract contained high concentrations of chlorogenic acid (approximately 100 microg/mg extract) and a variety of quercetin glycosides that were also detected in the fruit and stem extracts. Flavan-3-ol monomers (+)-catechin and (-)-epicatechin were found in all plant parts but their procyanidin dimers were exclusively identified in the stem and root. The accuracy and precision of the presented method were corroborated by low intra- and inter-day variations in quantitative results in all plant part extracts. Further validation of the extraction and analytical protocols focused on identified compounds with reputed anti-diabetic activity, revealing recoveries greater than 80% and detection limits of 0.12-2.73 microg/mL.


Subject(s)
Phenols/analysis , Vaccinium/chemistry , Calibration , Chromatography, High Pressure Liquid , Ethanol , Fruit/chemistry , Mass Spectrometry , Plant Extracts/analysis , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Stems/chemistry , Reproducibility of Results , Solvents , Spectrophotometry, Ultraviolet
17.
J Agric Food Chem ; 55(7): 2582-9, 2007 Apr 04.
Article in English | MEDLINE | ID: mdl-17348672

ABSTRACT

An alteration in the secondary metabolism of maize (Zea mays L.) genetically modified with the wheat oxalate oxidase (OxO) gene was observed using HPLC and fluorescence microscopy. Phenolic concentrations in the OxO lines were significantly increased, but DIMBOA synthesis was reduced due to a diversion in the shikimate pathway leading to phenolic and hydroxamic acids. Ferulic acid exhibited the largest increase and accounted for 80.4% of the total soluble phenolics. Transcription of a 13-lipoxygenase gene, coding for a key enzyme involved in the regulation of secondary metabolism, was substantially higher in the OxO line than in the null line. To test whether the high levels of soluble phenolic acids, in particular ferulic acid, contributed to the insect resistance in the OxO maize, ferulic acid was administered in meridic diets to European corn borer (ECB). A significant negative correlation between ferulic acid concentration and ECB larval growth rate was found. Field testing during 2001 showed that OxO maize was more resistant to ECB, with leaf consumption and stalk-tunneling damage significantly reduced by 28-34 and 37-39%, respectively, on all of the OxO lines tested and confirming published 2000 findings.


Subject(s)
Lepidoptera/physiology , Oxidoreductases/genetics , Plants, Genetically Modified/metabolism , Zea mays/enzymology , Zea mays/metabolism , Animals , Benzoxazines/analysis , Oxidoreductases/metabolism , Phenols/analysis , Plant Diseases , Triticum/enzymology , Triticum/genetics , Zea mays/chemistry
18.
Can J Physiol Pharmacol ; 84(8-9): 847-58, 2006.
Article in English | MEDLINE | ID: mdl-17111029

ABSTRACT

Type II diabetes is a major health problem worldwide. Some populations, such as aboriginal peoples, are particularly at risk for this disease. In the Cree Nation of Quebec, Canada, prevalence in adults is approaching 20%, and the consequences are compounded by low compliance with modern medicine. In 2003, we conducted an ethnobotanical study of Cree medicinal plants used for the treatment of symptoms of diabetes. This served as the basis for a project designed to identify efficacious complementary treatment options more readily accepted by this population. The present study assesses the in vitro anti-diabetic potential of extracts from the 8 most promising plants to emerge from the ethnobotanical study. Cell-based bioassays were employed to screen for (i) potentiation of glucose uptake by skeletal muscle cells (C2C12) and adipocytes (3T3-L1); (ii) potentiation of glucose-stimulated insulin secretion (GSIS) and insulin production by pancreatic beta cells (INS 832/13); (iii) potentiation of triglyceride accumulation in differentiating 3T3-L1 cells; (iv) protection against glucose toxicity and glucose deprivation in pre-sympathetic neurons (PC12-AC). Additionally, anti-oxidant activity was measured biochemically by the diphenylpicrylhydrazyl (DPPH) reduction assay. All plant extracts potentiated basal or insulin-stimulated glucose uptake to some degree in muscle cells or adipocytes. Adipocyte differentiation was accelerated by 4 extracts. Five extracts conferred protection in PC12 cells. Three extracts displayed free radical scavenging activity similar to known anti-oxidants. None of the plant extracts enhanced GSIS or insulin content in INS 832/13 beta cells. It is concluded that the Cree pharmacopoeia contains several plants with significant anti-diabetic potential.


Subject(s)
Hypoglycemic Agents/pharmacology , Magnoliopsida/chemistry , Pinaceae/chemistry , 3T3-L1 Cells , Animals , Cell Differentiation/drug effects , Cell Survival/drug effects , Glucose/metabolism , Humans , Insulin/metabolism , Mice , PC12 Cells , Pharmacopoeias as Topic , Phenols/analysis , Plant Extracts/pharmacology , Population Groups , Quebec , Rats , Triglycerides/metabolism
19.
J Appl Behav Anal ; 39(3): 393-7, 2006.
Article in English | MEDLINE | ID: mdl-17020221

ABSTRACT

Ten participants from an online community of fiction writers were exposed to a treatment package intended to increase their writing productivity. The package consisted of graphic feedback provided through a Web page, praise for goal completion delivered via e-mail, and editing of manuscripts by other members of the community dependent on the completion of word-count goals. A multiple baseline design across groups was used to evaluate the effects of the intervention, which was successful in increasing the number of words written.


Subject(s)
Efficiency , Internet/statistics & numerical data , Writing , Humans
20.
Phytomedicine ; 13(9-10): 612-23, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16979328

ABSTRACT

Incidence of type II diabetes is rapidly increasing worldwide. In order to identify complementary or alternative approaches to existing medications, we studied anti-diabetic properties of Vaccinium angustifolium Ait., a natural health product recommended for diabetes treatment in Canada. Ethanol extracts of root, stem, leaf, and fruit were tested at 12.5 microg/ml for anti-diabetic activity in peripheral tissues and pancreatic beta cells using a variety of cell-based bioassays. Specifically, we assessed: (1) deoxyglucose uptake in differentiated C2C12 muscle cells and 3T3-L1 adipocytes; (2) glucose-stimulated insulin secretion (GSIS) in beta TC-tet pancreatic beta cells; (3) beta cell proliferation in beta TC-tet cells; (4) lipid accumulation in differentiating 3T3-L1 cells; (5) protection against glucose toxicity in PC12 cells. Root, stem, and leaf extracts significantly enhanced glucose transport in C2C12 cells by 15-25% in presence and absence of insulin after 20 h of incubation; no enhancement resulted from a 1 h exposure. In 3T3 cells, only the root and stem extracts enhanced uptake, and this effect was greater after 1 h than after 20 h; uptake was increased by up to 75% in absence of insulin. GSIS was potentiated by a small amount in growth-arrested beta TC-tet cells incubated overnight with leaf or stem extract. However, fruit extracts were found to increase 3H-thymidine incorporation in replicating beta TC-tet cells by 2.8-fold. Lipid accumulation in differentiating 3T3-L1 cells was accelerated by root, stem, and leaf extracts by as much as 6.5-fold by the end of a 6-day period. Stem, leaf, and fruit extracts reduced apoptosis by 20-33% in PC12 cells exposed to elevated glucose for 96 h. These results demonstrate that V. angustifolium contains active principles with insulin-like and glitazone-like properties, while conferring protection against glucose toxicity. Enhancement of proliferation in beta cells may represent another potential anti-diabetic property. Extracts of the Canadian blueberry thus show promise for use as a complementary anti-diabetic therapy.


Subject(s)
Blueberry Plants/chemistry , Hypoglycemic Agents/pharmacology , 3T3 Cells , Animals , Cell Line , Cell Proliferation/drug effects , Cytoprotection/drug effects , Deoxyglucose/metabolism , Glucose/metabolism , Glucose/toxicity , Hypoglycemic Agents/analysis , Insulin/metabolism , Lipid Metabolism/drug effects , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...