Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurooncol Adv ; 4(1): vdac131, 2022.
Article in English | MEDLINE | ID: mdl-36225650

ABSTRACT

Background: Chromosomal translocation has been detected in many human cancers including gliomas and is considered a driving force in tumorigenesis. Co-deletion of chromosome arms 1p and 19q is a hallmark for oligodendrogliomas. On the molecular level, 1p/19q co-deletion results from t(1;19)(q10;p10), which leads to the concomitant formation of a hybrid chromosome containing the 1q and 19p arms. A method to generate 1p/19q co-deletion is lacking, which hinders the investigation of how 1p/19q co-deletion contributes to gliomagenesis. Methods: We hypothesized that chromosomal translocation, such as t(1;19)(q10;p10) resulting in the 1p/19q co-deletion, may be induced by simultaneously introducing DNA double-strand breaks (DSBs) into chromosomes 1p and 19q using CRISPR/Cas9. We developed a CRISPR/Cas9-based strategy to induce t(1;19)(q10;p10) and droplet digital PCR (ddPCR) assays to detect the hybrid 1q/19p and 1p/19q chromosomes. Results: After translocation induction, we detected both 1p/19q and 1q/19p hybrid chromosomes by PCR amplification of the junction regions in HEK 293T, and U-251 and LN-229 glioblastoma cells. Sequencing analyses of the PCR products confirmed DNA sequences matching both chromosomes 1 and 19. Furthermore, the 1p/19q hybrid chromosome was rapidly lost in all tested cell lines. The 1q/19p hybrid chromosome also become undetectable over time likely due to cell survival disadvantage. Conclusion: We demonstrated that t(1;19)(q10;p10) may be induced by CRISPR/Cas9-mediated genomic editing. This method represents an important step toward engineering the 1p/19q co-deletion to model oligodendrogliomas. This method may also be generalizable to engineering other cancer-relevant translocations, which may facilitate the understanding of translocation roles in cancer progression.

2.
Mitochondrion ; 63: 32-36, 2022 03.
Article in English | MEDLINE | ID: mdl-35032707

ABSTRACT

BACKGROUND: Malignant gliomas are the most common primary adult brain tumors, with a poor prognosis and ill-defined etiology. Mitochondrial DNA (mtDNA) sequence variation has been linked with certain cancers; however, research on glioma is lacking. METHODS: We examined the association of common (minor allele frequency ≥ 5%) germline mtDNA variants and haplogroups with glioma risk in 1,566 glioma cases and 1,017 controls from a US case-control study, and 425 glioma cases and 1,534 matched controls from the UK Biobank cohort (UKB). DNA samples were genotyped using the UK Biobank array that included a set of common and rare mtDNA variants. Risk associations were examined separately for glioblastoma (GBM) and lower grade tumors (non-GBM). RESULTS: In the US study, haplogroup W was inversely associated with glioma when compared with haplogroup H (OR = 0.43, 95%CI: 0.23-0.79); this association was not demonstrated in the UKB (OR = 1.07, 95%CI: 0.47-2.43). In the UKB, the variant m.3010G > A was significantly associated with GBM (OR = 1.32; 95%CI: 1.01-1.73; p = 0.04), but not non-GBM (1.23; 95%CI: 0.78-1.95; p = 0.38); no similar association was observed in the US study. In the US study, the variant m.14798 T > C, was significantly associated with non-GBM (OR = 0.72; 95%CI: 0.53-0.99), but not GBM (OR = 0.86; 95%CI: 0.66-1.11), whereas in the UKB, a positive association was observed between this variant and GBM (OR = 1.46; 95%CI: 1.06-2.02) but not non-GBM (OR = 0.92; 95%CI: 0.52-1.63). None of these associations were significant after adjustment for multiple testing. CONCLUSION: The association of inherited mtDNA variation, including rare and singleton variants, with glioma risk merits further study.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Adult , Brain Neoplasms/genetics , Case-Control Studies , DNA, Mitochondrial/genetics , Glioblastoma/genetics , Glioma/genetics , Humans
4.
Neuro Oncol ; 19(8): 1119-1126, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28371907

ABSTRACT

BACKGROUND: Radiation with concurrent and adjuvant (6 cycles) temozolomide (TMZ) is the established standard of postsurgical care for newly diagnosed glioblastoma (GBM). This regimen has been adopted with variations, including extending TMZ beyond 6 cycles. The optimal duration of maintenance therapy remains controversial. METHODS: We performed pooled analysis of individual patient data from 4 randomized trials for newly diagnosed GBM. All patients who were progression free 28 days after cycle 6 were included. The decision to continue TMZ was per local practice and standards, and at the discretion of the treating physician. Patients were grouped into those treated with 6 cycles and those who continued beyond 6 cycles. Progression-free and overall survival were compared, adjusted by age, performance status, resection extent, and MGMT methylation. RESULTS: A total of 2214 GBM patients were included in the 4 trials. Of these, 624 qualified for analysis 291 continued maintenance TMZ until progression or up to 12 cycles, while 333 discontinued TMZ after 6 cycles. Adjusted for prognostic factors, treatment with more than 6 cycles of TMZ was associated with a somewhat improved progression-free survival (hazard ratio [HR] 0.80 [0.65-0.98], P = .03), in particular for patients with methylated MGMT (n = 342, HR 0.65 [0.50-0.85], P < .01). However, overall survival was not affected by the number of TMZ cycles (HR = 0.92 [0.71-1.19], P = .52), including the MGMT methylated subgroup (HR = 0.89 [0.63-1.26], P = .51). CONCLUSIONS: Continuing TMZ beyond 6 cycles was not shown to increase overall survival for newly diagnosed GBM.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Dacarbazine/analogs & derivatives , Glioblastoma/drug therapy , Adult , Aged , Aged, 80 and over , Combined Modality Therapy/methods , Dacarbazine/therapeutic use , Disease Progression , Disease-Free Survival , Female , Humans , Male , Middle Aged , Temozolomide , Tumor Suppressor Proteins/drug effects
5.
J Neurooncol ; 100(1): 95-103, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20213332

ABSTRACT

Bortezomib selectively binds and inhibits the 20S proteasome enzyme's active sites. This study was conducted to determine the side effects and maximum tolerated dose (MTD) of bortezomib in patients with recurrent malignant glioma. Separate dose escalations were conducted in patients taking or not taking enzyme-inducing anti-seizure drugs (+/-EIASD). The starting dose in both groups was 0.9 mg/m(2) intravenously twice weekly for the first three of each 4 week cycle. Imaging assessment of response was carried out and Plasma 20S proteasome activity inhibition and imaging was conducted to monitor efficacy. The 66 patients enrolled had a median age of 51 years, median KPS of 90%, and 77% had glioblastoma multiforme. The MTD in the -EIASD group was 1.70 mg/m(2) based on grade 3 thrombocytopenia, sensory neuropathy and fatigue. In the +EIASD group escalation was terminated at 2.5 mg/m(2) without meeting meet the MTD criteria. However, proteasome inhibition in this group did not change at doses above 1.90 mg/m(2) suggesting that further escalations would be unlikely to increase a biologic effect. Mean proteasome inhibition plateaued in +EIASD patients receiving 2.1 mg/m(2) of bortezomib at 77 ± 12% and in -EIASD patients treated with a dose of 1.7 mg/m(2) at 79 ± 6%. Two partial responses were observed. This study determined that EIASDs effect the MTD of bortezomib and the dose required for maximal inhibition of whole blood 20S proteasome. Some evidence of clinical activity was noted in this phase I study in patients with recurrent high grade gliomas.


Subject(s)
Antineoplastic Agents/therapeutic use , Boronic Acids/therapeutic use , Brain Neoplasms/drug therapy , Glioma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Pyrazines/therapeutic use , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/blood , Boronic Acids/blood , Bortezomib , Brain Neoplasms/blood , Dose-Response Relationship, Drug , Female , Glioma/blood , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Recurrence, Local/blood , Proteasome Endopeptidase Complex/metabolism , Pyrazines/blood , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...