Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 27(11): 2520-2527, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28408230

ABSTRACT

In this paper, we present the results of a ligand- and structure-based virtual screen targeting LRRK2, a kinase that has been implicated in Parkinson's disease. For the ligand-based virtual screen, the structures of 12 competitor compounds were used as queries for a variety of 2D and 3D searches. The structure-based virtual screen relied on homology models of LRRK2, as no X-ray structure is currently available in the public domain. From the virtual screening, 662 compounds were purchased, of which 35 showed IC50 values below 10µM in wild-type and/or mutant LRRK2 (a hit rate of 5.3%). Of these 35 hits, four were deemed to have potential for medicinal chemistry follow-up.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Binding Sites , Catalytic Domain , Drug Design , Humans , Inhibitory Concentration 50 , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Ligands , Molecular Docking Simulation , Protein Kinase Inhibitors/chemical synthesis
2.
Bioorg Med Chem Lett ; 25(19): 4109-13, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26321361

ABSTRACT

A high-throughput screen of the Genentech/Roche compound collection using a retinoic acid receptor-related orphan receptor C (RORc, RORγ, or NR1F3) biochemical assay revealed a N-sulfonyl-tetrahydroquinoline hit. Herein, we describe the hit-to-lead optimization and structure-activity relationships of these tetrahydroquinoline RORc inverse agonists. Through iterative synthesis and analog design, we identified compounds with improved biochemical RORc inverse agonist activity and RORc cellular potencies. These improved N-sulfonyl-tetrahydroquinoline compounds also exhibited selectivity for RORc over other nuclear receptors.


Subject(s)
Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Quinolines/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
3.
J Med Chem ; 58(12): 5053-74, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-25988399

ABSTRACT

Checkpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole class of ChK1 inhibitors, was found to be a highly potent inhibitor of acetylcholine esterase (AChE) and unsuitable for development. A campaign of analogue synthesis established SAR delineating ChK1 and AChE activities and allowing identification of new leads with improved profiles. In silico docking using a model of AChE permitted rationalization of the observed SAR. Compounds 19 (GNE-900) and 30 (GNE-145) were identified as selective, orally bioavailable ChK1 inhibitors offering excellent in vitro potency with significantly reduced AChE activity. In combination with gemcitabine, these compounds demonstrate an in vivo pharmacodynamic effect and are efficacious in a mouse p53 mutant xenograft model.


Subject(s)
Acetylcholinesterase/metabolism , Carbazoles/chemistry , Carbazoles/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Acetylcholinesterase/chemistry , Acetylcholinesterase/pharmacokinetics , Acetylcholinesterase/therapeutic use , Animals , Aza Compounds/chemistry , Aza Compounds/pharmacokinetics , Aza Compounds/pharmacology , Aza Compounds/therapeutic use , Cell Line, Tumor , Checkpoint Kinase 1 , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Crystallography, X-Ray , Dogs , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinases/chemistry , Rats
4.
ACS Med Chem Lett ; 6(3): 276-81, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25815138

ABSTRACT

A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled.

5.
Bioorg Med Chem Lett ; 24(19): 4714-4723, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25193232

ABSTRACT

Use of the tools of SBDD including crystallography led to the discovery of novel and potent 6,5 heterobicyclic MEKi's [J. Med. Chem.2012, 55, 4594]. The core change from a 5,6 heterobicycle to a 6,5 heterobicycle was driven by the desire for increased structural diversity and aided by the co-crystal structure of G-925 [J. Med. Chem.2012, 55, 4594]. The key design feature was the shift of the attachment of the five-membered heterocyclic ring towards the B ring while maintaining the key hydroxamate and anilino pharamcophoric elements in a remarkably similar position as in G-925. From modelling, changing the connection point of the five membered ring heterocycle placed the H-bond accepting nitrogen within a good distance and angle to the Ser212 [J. Med. Chem.2012, 55, 4594]. The resulting novel 6,5 benzoisothiazole MEKi G-155 exhibited improved potency versus aza-benzofurans G-925 and G-963 but was a potent inhibitor of cytochrome P450's 2C9 and 2C19. Lowering the logD by switching to the more polar imidazo[1,5-a] pyridine core significantly diminished 2C9/2C19 inhibition while retaining potency. The imidazo[1,5-a] pyridine G-868 exhibited increased potency versus the starting point for this work (aza-benzofuran G-925) leading to deprioritization of the azabenzofurans. The 6,5-imidazo[1,5-a] pyridine scaffold was further diversified by incorporating a nitrogen at the 7 position to give the imidazo[1,5-a] pyrazine scaffold. The introduction of the C7 nitrogen was driven by the desire to improve metabolic stability by blocking metabolism at the C7 and C8 positions (particularly the HLM stability). It was found that improving on G-868 (later renamed GDC-0623) required combining C7 nitrogen with a diol hydroxamate to give G-479. G-479 with polarity distributed throughout the molecule was improved over G-868 in many aspects.


Subject(s)
Drug Discovery , Heterocyclic Compounds/pharmacology , Imidazoles/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , HCT116 Cells , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 24(16): 3891-7, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25017032

ABSTRACT

Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma-protein unbound fraction and improvements in cellular permeability and aqueous solubility.


Subject(s)
Blood Proteins/chemistry , Cell Membrane Permeability/drug effects , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Sulfonamides/pharmacology , Animals , Binding Sites/drug effects , Blood Proteins/metabolism , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Drug Design , Humans , Hydrophobic and Hydrophilic Interactions , Madin Darby Canine Kidney Cells , Models, Molecular , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Rats , Solubility , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
7.
Bioorg Med Chem Lett ; 24(9): 2182-7, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24685544

ABSTRACT

Screening a nuclear receptor compound subset in a RORc biochemical binding assay revealed a benzylic tertiary sulfonamide hit. Herein, we describe the identification of compounds with improved RORc biochemical inverse agonist activity and cellular potencies. These improved compounds also possessed appreciable selectivity for RORc over other nuclear receptors.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Sulfonamides/chemistry , Sulfonamides/pharmacology , Humans , Ligands , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 23(24): 6604-9, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24239186

ABSTRACT

The structure-activity relationships of T0901317 analogs were explored as RORc inverse agonists using the principles of property- and structure-based drug design. An X-ray co-crystal structure of T0901317 and RORc was obtained and provided molecular insight into why T0901317 functioned as an inverse agonist of RORc; whereas, the same ligand functioned as an agonist of FXR, LXR, and PXR. The structural data was also used to design inhibitors with improved RORc biochemical and cellular activities. The improved inhibitors possessed enhanced selectivity profiles (rationalized using the X-ray crystallographic data) against other nuclear receptors.


Subject(s)
Drug Design , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Propanols/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Inverse Agonism , Humans , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/metabolism , Interferon-gamma/metabolism , Interleukin-17/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/metabolism
9.
J Med Chem ; 55(10): 4594-604, 2012 May 24.
Article in English | MEDLINE | ID: mdl-22506516

ABSTRACT

Using structure-based design, two novel series of highly potent biaryl amine mitogen-activated protein kinase kinase (MEK) inhibitors have been discovered. These series contain an H-bond acceptor, in a shifted position compared with previously disclosed compounds, and an adjacent H-bond donor, resulting in a bidentate interaction with the Ser212 residue of MEK1. The most potent compound identified, 1 (G-894), is orally active in in vivo pharmacodynamic and tumor xenograft models.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzofurans/chemical synthesis , Benzothiazoles/chemical synthesis , Indazoles/chemical synthesis , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Serine/metabolism , Allosteric Regulation , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzofurans/pharmacokinetics , Benzofurans/pharmacology , Benzothiazoles/pharmacokinetics , Benzothiazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Female , Hydrogen Bonding , Indazoles/pharmacokinetics , Indazoles/pharmacology , Mice , Models, Molecular , Molecular Structure , Neoplasm Transplantation , Rats , Structure-Activity Relationship , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...