Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 61(12): 1675-1686, 2020 12.
Article in English | MEDLINE | ID: mdl-33109681

ABSTRACT

HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Hydroxymethylglutaryl CoA Reductases/deficiency , Hydroxymethylglutaryl CoA Reductases/genetics , Liver/metabolism , Terpenes/metabolism , Gene Deletion
2.
J Biomol Screen ; 21(7): 671-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27245142

ABSTRACT

Stimulation of cultured epithelial cells with scatter factor/hepatocyte growth factor (HGF) results in the detachment of cell-cell junctions and initiation of cell migration. Instead of coordinating collective cell behavior within a tissue, cells become solitary and have few cell-cell interactions. Since epithelial scattering is recapitulated in cancer progression and since HGF signaling drives cancer metastasis in many cases, inhibitors of HGF signaling have been proposed to act as anticancer agents. We previously sought to better understand critical components required for HGF-induced epithelial scattering by performing a forward chemical genetics screen, which resulted in the identification of compounds with no previously reported biological activity that we report here. In efforts to determine the mechanism of these compounds, we find that many compounds have broad antiproliferative effects on cancer cell lines by arrest of cell division in G2/M with minimal induction of apoptosis. This effect is reminiscent of microtubule-targeting agents, and we find that several of these scaffolds directly inhibit microtubule polymerization. Compounds are assessed for their toxicity and pharmacokinetics in vivo. The identification of novel small-molecule inhibitors of microtubule polymerization highlights the role of the microtubule cytoskeleton in HGF-induced epithelial scattering.


Subject(s)
Antineoplastic Agents/isolation & purification , Hepatocyte Growth Factor/antagonists & inhibitors , High-Throughput Screening Assays/methods , Neoplasms/drug therapy , Small Molecule Libraries/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Epithelial Cells/drug effects , Hepatocyte Growth Factor/genetics , Humans , Intercellular Junctions/drug effects , Microtubules/drug effects , Neoplasm Metastasis , Neoplasms/pathology , Polymerization/drug effects , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology
3.
Biol Reprod ; 95(2): 44, 2016 08.
Article in English | MEDLINE | ID: mdl-27335065

ABSTRACT

Pregnancy is a complex physiological process tightly controlled by the interplay among hormones, morphogens, transcription factors, and signaling pathways. Although recent studies using genetically engineered mouse models have revealed that ligands and receptors of transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) signaling pathways are essential for multiple reproductive events during pregnancy, the functional role of SMAD transcription factors, which serve as the canonical signaling platform for the TGFbeta/BMP pathways, in the oviduct and uterus is undefined. Here, we used a mouse model containing triple conditional deletion of the BMP receptor signaling Smads (Smad1 and Smad5) and Smad4, the central mediator of both TGFbeta and BMP signaling, to investigate the role of the SMADs in reproductive tract structure and function in cells from the Amhr2 lineage. Unlike the respective single- or double-knockouts, female Smad1(flox/flox) Smad5(flox/flox) Smad4(flox/flox) Amhr2(cre/+)conditional knockout (i.e., Smad1/5/4-Amhr2-cre KO) mice are sterile. We discovered that Smad1/5/4-Amhr2-cre KO females have malformed oviducts that subsequently develop oviductal diverticuli. These oviducts showed dysregulation of multiple genes essential for oviduct and smooth muscle development. In addition, uteri from Smad1/5/4-Amhr2-cre KO females exhibit multiple defects in stroma, epithelium, and smooth muscle layers and fail to assemble a closed uterine lumen upon embryo implantation, with defective uterine decidualization that led to pregnancy loss at early to mid-gestation. Taken together, our study uncovers a new role for the SMAD transcription factors in maintaining the structural and functional integrity of oviduct and uterus, required for establishment and maintenance of pregnancy.


Subject(s)
Fallopian Tubes/metabolism , Oviducts/metabolism , Reproduction/physiology , Signal Transduction/physiology , Smad Proteins/metabolism , Uterus/metabolism , Animals , Embryo Implantation/physiology , Fallopian Tubes/abnormalities , Female , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Muscle, Smooth/abnormalities , Muscle, Smooth/metabolism , Oviducts/abnormalities , Pregnancy , Smad Proteins/genetics , Uterus/abnormalities , Uterus/physiology
4.
Sci Rep ; 5: 13216, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26279472

ABSTRACT

Motile cilia in the mammalian oviduct play a key role in reproduction, such as transporting fertilized oocytes to the uterus for implantation. Due to their small size (~5-10 µm in length and ~300 nm in diameter), live visualization of cilia and their activity in the lumen of the oviduct through tissue layers represents a major challenge not yet overcome. Here, we report a functional low-coherence optical imaging technique that allows in vivo depth-resolved mapping of the cilia location and cilia beat frequency (CBF) in the intact mouse oviduct with micro-scale spatial resolution. We validate our approach with widely-used microscopic imaging methods, present the first in vivo mapping of the oviduct CBF in its native context, and demonstrate the ability of this approach to differentiate CBF in different locations of the oviduct at different post-conception stages. This technique opens a range of opportunities for live studies in reproductive medicine as well as other areas focused on cilia activity and related ciliopathies.


Subject(s)
Cilia/physiology , Oviducts/diagnostic imaging , Animals , Female , Male , Mice , Microscopy, Confocal , Minute Virus of Mice , Oviducts/physiology , Radiography , Tomography, Optical Coherence
5.
Biomed Opt Express ; 6(7): 2713-23, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26203393

ABSTRACT

The understanding of the reproductive events and the molecular mechanisms regulating fertility and infertility in humans relies heavily on the analysis of the corresponding phenotypes in mouse models. While molecular genetic approaches provide significant insight into the molecular regulation of these processes, the lack of live imaging methods that allow for detailed visualization of the mouse reproductive organs limits our investigations of dynamic events taking place during the ovulation, the fertilization and the pre-implantation stages of embryonic development. Here we introduce an in vivo three-dimensional imaging approach for visualizing the mouse oviduct and reproductive events with micro-scale spatial resolution using optical coherence tomography (OCT). This method relies on the natural tissue optical contrast and does not require the application of any contrast agents. For the first time, we present live high-resolution images of the internal structural features of the oviduct, as well as other reproductive organs and the oocytes surrounded by cumulus cells. These results provide the basis for a wide range of live dynamic studies focused on understanding fertility and infertility.

SELECTION OF CITATIONS
SEARCH DETAIL
...