Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 46(11): 1617-1625, 2018 11.
Article in English | MEDLINE | ID: mdl-30135244

ABSTRACT

Metabolic profiles of four drugs possessing diverse metabolic pathways (timolol, meloxicam, linezolid, and XK469) were compared following incubations in both suspended cryopreserved human hepatocytes and the HµREL hepatocyte coculture model. In general, minimal metabolism was observed following 4-hour incubations in both suspended hepatocytes and the HµREL model, whereas incubations conducted up to 7 days in the HµREL coculture model resulted in more robust metabolic turnover. In the case of timolol, in vivo human data suggest that 22% of the dose is transformed via multistep oxidative opening of the morpholine moiety. Only the first-step oxidation was detected in suspended hepatocytes, whereas the relevant downstream metabolites were produced in the HµREL model. For meloxicam, both the hydroxymethyl and subsequent carboxylic acid metabolites were abundant following incubation in the HµREL model, while only a trace amount of the hydroxymethyl metabolite was observed in suspension. Similar to timolol, linezolid generated substantially higher levels of morpholine ring-opened carboxylic acid metabolites in the HµREL model. Finally, while the major aldehyde oxidase-mediated mono-oxidative metabolite of XK469 was minimally produced in hepatocyte suspension, the HµREL model robustly produced this metabolite, consistent with a pathway reported to account for 54% of the total urinary excretion in human. In addition, low-level taurine and glycine conjugates were identified in the HµREL model. In summary, continuous metabolite production was observed for up to 7 days of incubation in the HµREL model, covering cytochrome P450, aldehyde oxidase, and numerous conjugative pathways, while predominant metabolites correlated with relevant metabolites reported in human in vivo studies.


Subject(s)
Biotransformation/physiology , Hepatocytes/metabolism , Pharmaceutical Preparations/metabolism , Cells, Cultured , Cytochrome P-450 Enzyme System/metabolism , Glycine/metabolism , Humans , Metabolic Clearance Rate/physiology , Metabolic Networks and Pathways/physiology , Oxidation-Reduction , Taurine/metabolism
2.
Cancer Chemother Pharmacol ; 77(1): 43-62, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26645404

ABSTRACT

PURPOSE: The metabolism and disposition of the first-in-class DOT1L inhibitor, EPZ-5676 (pinometostat), was investigated in rat and dog. Metabolite profiles were compared with those from adult patients in the first-in-man phase 1 study as well as the cross-species metabolism observed in vitro. METHODS: EPZ-5676 was administered to rat and dog as a 24-h IV infusion of [(14)C]-EPZ-5676 for determination of pharmacokinetics, mass balance, metabolite profiling and biodistribution by quantitative whole-body autoradiography (QWBA). Metabolite profiling and identification was performed by radiometric and LC-MS/MS analysis. RESULTS: Fecal excretion was the major route of elimination, representing 79 and 81% of the total dose in and rat and dog, respectively. QWBA in rats showed that the radioactivity was well distributed in the body, except for the central nervous system, and the majority of radioactivity was eliminated from most tissues by 168 h. Fecal recovery of dose-related material in bile duct-cannulated animals as well as higher radioactivity concentrations in the wall of the large intestine relative to liver implicated intestinal secretion as well as biliary elimination. EPZ-5676 underwent extensive oxidative metabolism with the major metabolic pathways being hydroxylation of the t-butyl group (EPZ007769) and N-dealkylation of the central nitrogen. Loss of adenine from parent EPZ-5676 (M7) was observed only in rat and dog feces, suggesting the involvement of gut microbiota. In rat and dog, steady-state plasma levels of total radioactivity and parent EPZ-5676 were attained rapidly and maintained through the infusion period before declining rapidly on cessation of dosing. Unchanged EPZ-5676 was the predominant circulating species in rat, dog and man. CONCLUSIONS: The excretory and metabolic pathways for EPZ-5676 were very similar across species. Renal excretion of both parent EPZ-5676 and EPZ-5676-related material was low, and in preclinical species fecal excretion of parent EPZ-5676 and EPZ007769 accounted for the majority of drug-related elimination.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Feces/chemistry , Methyltransferases/antagonists & inhibitors , Adult , Animals , Antineoplastic Agents/administration & dosage , Autoradiography/methods , Benzimidazoles/administration & dosage , Chromatography, Liquid/methods , Dogs , Female , Histone-Lysine N-Methyltransferase , Humans , Infusions, Intravenous , Male , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Species Specificity , Tandem Mass Spectrometry/methods , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...