Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Zootaxa ; 5190(4): 451-484, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-37045360

ABSTRACT

This study is dedicated to the late Dr. John LaSalle, and reviews the world species of Pleurotroppopsis Girault (Hymenoptera: Eulophidae); fourteen species are treated, of which two are newly described: P. dactylispae Cao & Zhu sp. nov. from China and P. peukscutella Cao & Zhu sp. nov. from Malaysia. On the basis of morphological characters, tentative relationships among genera allied to Pleurotroppopsis are discussed. A revised definition of Pleurotroppopsis is presented based on study of type specimens of all species and a critical review of previous studies on the genus. In addition, parsimony analyses were conducted to infer a phylogeny of Pleurotroppopsis species based on a unique data matrix of morphological characters. Keys to genera allied to Pleurotroppopsis and to known species of Pleurotroppopsis are provided.


Subject(s)
Hymenoptera , Animals , Phylogeny
2.
Insects ; 11(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271986

ABSTRACT

(1) Background: Landscape simplification is a major threat to bee and wasp conservation in the tropics, but reliable, long-term population data are lacking. We investigated how community composition, diversity, and abundance of tropical solitary bees and wasps change with landscape simplification (plant diversity, plant richness, distance from forest, forest cover, and land use type) and season. (2) Methods: We installed 336 timber and cob trap nests in four complex forests and three simplified orchards within the subtropical biodiversity hotspot of south-east Queensland, Australia. Trap nests were replaced every season for 23 months and all emergents identified. (3) Results: We identified 28 wasp species and 13 bee species from 2251 brood cells. Bee and wasp community composition changed with landscape simplification such that large, ground-nesting, and spider-hunting species were present in all landscapes, while those with specialist resource requirements and (clepto) parasitoids were present only in complex landscapes. Abundance and diversity of bees and wasps were unaffected by landscape simplification but increased with rainfall. (4) Conclusions: This study highlights the need for multi-year studies incorporating nuanced measures such as composition with a focus on functional diversity to detect changes bee and wasp populations.

3.
Insects ; 10(5)2019 May 03.
Article in English | MEDLINE | ID: mdl-31058867

ABSTRACT

Although elevational gradients of biodiversity have long been the topic of scientific research, information on patterns of, and processes that shape insect community structure across elevation is still lacking. Addressing this gap requires the use of both taxonomic and functional approaches when studying diversity across elevational gradients. In this study, we examined taxonomic and functional alpha and beta diversity of ant assemblages sampled along tropical, subtropical, and subalpine elevational transects in Yunnan Province, southwest China. Species richness was used to quantify taxonomic alpha diversity, and two indices (FD and FRic) were calculated using morphological measurements to quantify functional alpha diversity. Taxonomic and functional beta diversity were partitioned into their turnover- and nestedness-resultant components. Though temperature and functional alpha diversity decreased linearly with increasing elevation, taxonomic alpha diversity showed a significant logarithmic decrease, with few species present at elevations greater than 3000 m a.s.l. The turnover-resultant component of taxonomic beta diversity increased with increasing elevational distance, while the nestedness-resultant component of functional beta diversity increased with increasing elevational distance in the subtropical transect. The observed patterns of taxonomic and functional diversity reflected ants' thermophilic nature, implying functional adaptations (i.e., nested functional diversity) at higher elevations where environmental conditions were unfavorable.

4.
PLoS One ; 11(5): e0155826, 2016.
Article in English | MEDLINE | ID: mdl-27192085

ABSTRACT

Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of relatively distinct assemblages containing a high level of regional endemic species. Species richness was most strongly and positively associated with historical and current climatic stabilities and negatively associated with severity of recent disturbance (treefalls). Assemblage composition was associated with latitude and historical and current climatic conditions. Although the results need to be interpreted carefully due to inter-correlation between historical and current climatic variables, our study is in agreement with the hypothesis that upland refugia provided stable climatic conditions since the last glacial maximum, and supported a diverse fauna of flightless beetle species. These findings are important for conservation management as upland habitats become increasingly threatened by climate change.


Subject(s)
Altitude , Animal Distribution , Coleoptera/physiology , Rainforest , Animals , Australia
5.
J Anim Ecol ; 84(2): 353-63, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25244661

ABSTRACT

Gradients in elevation are increasingly used to investigate how species respond to changes in local climatic conditions. Whilst many studies have shown elevational patterns in species richness and turnover, little is known about how food web structure is affected by elevation. Contrasting responses of predator and prey species to elevation may lead to changes in food web structure. We investigated how the quantitative structure of a herbivore-parasitoid food web changes with elevation in an Australian subtropical rain forest. On four occasions, spread over 1 year, we hand-collected leaf miners at twelve sites, along three elevational gradients (between 493 m and 1159 m a.s.l). A total of 5030 insects, including 603 parasitoids, were reared, and summary food webs were created for each site. We also carried out a replicated manipulative experiment by translocating an abundant leaf-mining weevil Platynotocis sp., which largely escaped parasitism at high elevations (≥ 900 m a.s.l.), to lower, warmer elevations, to test if it would experience higher parasitism pressure. We found strong evidence that the environmental change that occurs with increasing elevation affects food web structure. Quantitative measures of generality, vulnerability and interaction evenness decreased significantly with increasing elevation (and decreasing temperature), whilst elevation did not have a significant effect on connectance. Mined plant composition also had a significant effect on generality and vulnerability, but not on interaction evenness. Several relatively abundant species of leaf miner appeared to escape parasitism at higher elevations, but contrary to our prediction, Platynotocis sp. did not experience greater levels of parasitism when translocated to lower elevations. Our study indicates that leaf-mining herbivores and their parasitoids respond differently to environmental conditions imposed by elevation, thus producing structural changes in their food webs. Increasing temperatures and changes in vegetation communities that are likely to result from climate change may have a restructuring effect on host-parasitoid food webs. Our translocation experiment, however, indicated that leaf miners currently escaping parasitism at high elevations may not automatically experience higher parasitism under warmer conditions and future changes in food web structure may depend on the ability of parasitoids to adapt to novel hosts.


Subject(s)
Altitude , Food Chain , Insecta/physiology , Insecta/parasitology , Plants/parasitology , Animals , Australia , Ecosystem , Plant Leaves/parasitology , Rainforest , Temperature
6.
J Econ Entomol ; 107(4): 1307-15, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25195416

ABSTRACT

In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.


Subject(s)
Ants , Insect Control , Animals , Population Dynamics , Queensland
7.
PLoS One ; 9(2): e88635, 2014.
Article in English | MEDLINE | ID: mdl-24586362

ABSTRACT

With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.


Subject(s)
Animal Distribution/physiology , Biodiversity , Climate Change , Coleoptera/physiology , Ecosystem , Models, Biological , Animals , Endangered Species/trends , Linear Models , Queensland , Species Specificity , Tropical Climate
8.
J Insect Sci ; 9: 12, 2009.
Article in English | MEDLINE | ID: mdl-19613441

ABSTRACT

This study aims to identify a set of areas with high biodiversity value over a small spatial scale within the Australian Wet Tropics. We identified sites of high biodiversity value across an altitudinal gradient of ground dwelling ant communities using three measures of biodiversity. The three measures considered were estimated species richness, complementarity between sites and evolutionary history. The latter measure was derived using the systematic nomenclature of the ants to infer a surrogate phylogeny. The goal of conservation assessments could then be achieved by choosing the most diverse site combinations. This approach was found to be valuable for identifying the most diverse site combinations across an altitudinal gradient that could ensure the preservation of terrestrial ground dwelling invertebrates in the Australian Wet Tropics.


Subject(s)
Ants/physiology , Conservation of Natural Resources , Tropical Climate , Animals , Ants/classification , Australia , Biodiversity , Phylogeny , Rain
9.
Naturwissenschaften ; 96(6): 679-83, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19238345

ABSTRACT

One of the energetic benefits of daily torpor over prolonged hibernation is that it enables animals to regularly forage and, therefore, replenish food reserves between bouts of torpor. However, little is known about the diet of predators undergoing torpor or whether differences in prey composition among individuals influence torpor characteristics. Here, we test the hypothesis that prey composition affects winter torpor use and patterns of a population of carnivorous marsupial, the brush-tailed mulgara (Dasycercus blythi), in the Great Sandy Desert, Australia. Mulgaras in the study population captured a wide range of prey including vertebrates (mammals, reptiles, birds), seven insect orders, spiders and centipedes. The proportion of vertebrates in the diet was negatively correlated with both frequency of torpor use and maximum bout duration. This variation in torpor use with diet can be explained by the higher energetic content of vertebrates as well as their larger size. Even assuming uniform intake of prey biomass among individuals, those that subsisted on an invertebrate-dominated diet during winter apparently suffered energetic shortages as a result of the scarcity of invertebrate taxa with high energy content (such as insect larvae). Our study is the first to demonstrate a link between diet composition and daily torpor use in a free-ranging mammal.


Subject(s)
Desert Climate , Diet , Marsupialia/physiology , Predatory Behavior , Animals , Australia , Birds , Carnivora/physiology , Feeding Behavior/physiology , Female , Insecta , Male , Mammals , Museums , Regression Analysis , Spiders
10.
J Exp Biol ; 211(Pt 24): 3808-15, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19043053

ABSTRACT

The Australian noctuid moth, Speiredonia spectans shares its subterranean day roosts (caves and abandoned mines) with insectivorous bats, some of which prey upon it. The capacity of this moth to survive is assumed to arise from its ability to listen for the bats' echolocation calls and take evasive action; however, the auditory characteristics of this moth or any tropically distributed Australian moth have never been examined. We investigated the ears of S. spectans and determined that they are among the most sensitive ever described for a noctuid moth. Using playbacks of cave-recorded bats, we determined that S. spectans is able to detect most of the calls of two co-habiting bats, Rhinolophus megaphyllus and Miniopterus australis, whose echolocation calls are dominated by frequencies ranging from 60 to 79 kHz. Video-recorded observations of this roost site show that S. spectans adjusts its flight activity to avoid bats but this defence may delay the normal emergence of the moths and leave some 'pinned down' in the roosts for the entire night. At a different day roost, we observed the auditory responses of one moth to the exceptionally high echolocation frequencies (150-160 kHz) of the bat Hipposideros ater and determined that S. spectans is unable to detect most of its calls. We suggest that this auditory constraint, in addition to the greater flight manoeuvrability of H. ater, renders S. spectans vulnerable to predation by this bat to the point of excluding the moth from day roosts where the bat occurs.


Subject(s)
Behavior, Animal/physiology , Chiroptera/physiology , Hearing/physiology , Moths/physiology , Animals , Australia , Chiroptera/classification , Ear/physiology , Echolocation/physiology , Flight, Animal/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...