Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877316

ABSTRACT

Precision pharmacology aims to manipulate specific cellular interactions within complex tissues. In this pursuit, we introduce DART.2 (drug acutely restricted by tethering), a second-generation cell-specific pharmacology technology. The core advance is optimized cellular specificity-up to 3,000-fold in 15 min-enabling the targeted delivery of even epileptogenic drugs without off-target effects. Additionally, we introduce brain-wide dosing methods as an alternative to local cannulation and tracer reagents for brain-wide dose quantification. We describe four pharmaceuticals-two that antagonize excitatory and inhibitory postsynaptic receptors, and two that allosterically potentiate these receptors. Their versatility is showcased across multiple mouse-brain regions, including cerebellum, striatum, visual cortex and retina. Finally, in the ventral tegmental area, we find that blocking inhibitory inputs to dopamine neurons accelerates locomotion, contrasting with previous optogenetic and pharmacological findings. Beyond enabling the bidirectional perturbation of chemical synapses, these reagents offer intersectional precision-between genetically defined postsynaptic cells and neurotransmitter-defined presynaptic partners.

2.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766037

ABSTRACT

Extinction learning is an essential form of cognitive flexibility, which enables obsolete reward associations to be discarded. Its downregulation can lead to perseveration, a symptom seen in several neuropsychiatric disorders. This balance is regulated by dopamine from VTA DA (ventral tegmental area dopamine) neurons, which in turn are largely controlled by GABA (gamma amino-butyric acid) synapses. However, the causal relationship of these circuit elements to extinction and perseveration remain incompletely understood. Here, we employ an innovative drug-targeting technology, DART (drug acutely restricted by tethering), to selectively block GABA A receptors on VTA DA neurons as mice engage in Pavlovian learning. DART eliminated GABA A -mediated pauses-brief decrements in VTA DA activity canonically thought to drive extinction learning. However, contrary to the hypothesis that blocking VTA DA pauses should eliminate extinction learning, we observed the opposite-accelerated extinction learning. Specifically, DART eliminated the naturally occurring perseveration seen in half of control mice. We saw no impact on Pavlovian conditioning, nor on other aspects of VTA DA neural firing. These findings challenge canonical theories, recasting GABA A -mediated VTA DA pauses from presumed facilitators of extinction to drivers of perseveration. More broadly, this study showcases the merits of targeted synaptic pharmacology, while hinting at circuit interventions for pathological perseveration.

SELECTION OF CITATIONS
SEARCH DETAIL
...