Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 8(12): 2406-2419, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973868

ABSTRACT

Understanding drivers of terrestrial fungal communities over large scales is an important challenge for predicting the fate of ecosystems under climate change and providing critical ecological context for bioengineering plant-microbe interactions in model systems. We conducted an extensive molecular and microscopy field study across the contiguous United States measuring natural variation in the Populus fungal microbiome among tree species, plant niche compartments and key symbionts. Our results show clear biodiversity hotspots and regional endemism of Populus-associated fungal communities explained by a combination of climate, soil and geographic factors. Modelling climate change impacts showed a deterioration of Populus mycorrhizal associations and an increase in potentially pathogenic foliar endophyte diversity and prevalence. Geographic differences among these symbiont groups in their sensitivity to environmental change are likely to influence broader forest health and ecosystem function. This dataset provides an above- and belowground atlas of Populus fungal biodiversity at a continental scale.


Subject(s)
Mycorrhizae , Populus , Trees/microbiology , Ecosystem , Populus/microbiology , Biodiversity
2.
Microb Ecol ; 85(4): 1356-1366, 2023 May.
Article in English | MEDLINE | ID: mdl-35552795

ABSTRACT

In agriculture, horticulture and plantation forestry, Bacillus species are the most commonly applied antagonists and biopesticides, targeting plant pathogens and insect pests, respectively. Bacillus isolates are also used as bacterial plant biostimulants, or BPBs. Such useful isolates of Bacillus are typically sourced from soil. Here, we show that Bacillus - and other antagonistic microbes - can be sourced from a broad range of plant seeds. We found that culturable Bacillus isolates are common in the seeds of 98 plant species representing 39 families (i.e., 87% of the commonly cultured bacteria belonged to Bacillales). We also found that 83% of the commonly cultured fungi from the seeds of the 98 plant species belonged to just three orders of fungi-Pleosporales, Hypocreales and Eurotiales-that are also associated with antagonism. Furthermore, we confirmed antagonism potential in agaro with seed isolates of Bacillus from Pinus monticola as a representative case. Eight isolates each of seed Bacillus, seed fungi, and foliar fungi, all from P. monticola, were paired in a total of 384 possible pair-wise interactions (with seed and foliar fungi as the targets). Seed Bacillus spp. were the strongest antagonists of the seed and foliar fungi, with a mean interaction strength 2.8 times greater than seed fungi (all either Eurotiales or Hypocreales) and 3.2 times greater than needle fungi. Overall, our study demonstrates that seeds host a taxonomically narrow group of culturable, antagonistic bacteria and fungi.


Subject(s)
Ascomycota , Bacillus , Humans , Seeds/microbiology , Fungi , Bacteria , Plants
3.
Methods Mol Biol ; 2605: 65-78, 2023.
Article in English | MEDLINE | ID: mdl-36520389

ABSTRACT

Seed fungi are potentially important for their roles in seedling microbiome assembly and seedling health, but surveys of full seed fungal communities remain limited. While culture-dependent methods have been used to characterize some members of the seed mycobiota, recent culture-independent studies have improved the ease in identifying and characterizing full seed fungal communities. In this chapter, we describe how to survey seed fungi using both traditional culture-based methods and culture-free metabarcoding. We first describe protocols for the isolation and long-term preservation of fungal strains from individual seeds and for the extraction and amplification of DNA from such fungal isolates for identification with Sanger sequencing. We also detail how to extract, amplify, and sequence fungal DNA directly from individual seeds. Finally, we provide suggestions for troubleshooting media choices, PCR inhibition by isolates and plant tissue, and PCR limitation by low fungal DNA.


Subject(s)
Mycobiome , DNA, Fungal/genetics , Fungi , Seeds/genetics , Seeds/microbiology , Seedlings/genetics
5.
Annu Rev Phytopathol ; 60: 337-356, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35584884

ABSTRACT

Tree planting and natural regeneration contribute to the ongoing effort to restore Earth's forests. Our review addresses how the plant microbiome can enhance the survival of planted and naturally regenerating seedlings and serve in long-term forest carbon capture and the conservation of biodiversity. We focus on fungal leaf endophytes, ubiquitous defensive symbionts that protect against pathogens. We first show that fungal and oomycetous pathogen richness varies greatly for tree species native to the United States (n = 0-876 known pathogens per US tree species), with nearly half of tree species either without pathogens in these major groups or with unknown pathogens. Endophytes are insurance against the poorly known and changing threat of tree pathogens. Next, we review studies of plant phyllosphere feedback, but knowledge gaps prevent us from evaluating whether adding conspecific leaf litter to planted seedlings promotes defensive symbiosis, analogous to adding soil to promote positive feedback. Finally, we discuss research priorities for integrating the plant microbiome into efforts to expand Earth's forests.


Subject(s)
Forests , Microbiota , Biodiversity , Plant Leaves , Seedlings , Soil , Trees
6.
Mol Ecol ; 31(10): 3018-3030, 2022 05.
Article in English | MEDLINE | ID: mdl-35313045

ABSTRACT

Closely related species are expected to have similar functional traits due to shared ancestry and phylogenetic inertia. However, few tests of this hypothesis are available for plant-associated fungal symbionts. Fungal leaf endophytes occur in all land plants and can protect their host plant from disease by a variety of mechanisms, including by parasitizing pathogens (e.g., mycoparasitism). Here, we tested whether phylogenetic relatedness among species of Cladosporium, a widespread genus that includes mycoparasitic species, predicts the effect of this endophyte on the severity of leaf rust disease. First, we used congruence among different marker sequences (i.e., genealogical concordance phylogenetic species recognition criterion) to delimit species of Cladosporium. Next, in a controlled experiment, we quantified both mycoparasitism and disease modification for the selected Cladosporium species. We identified 17 species of Cladosporium; all the species reduced rust disease severity in our experiment. Cladosporium phylogeny was a significant predictor of mycoparasitism. However, we did not observe a phylogenetic effect on disease severity overall, indicating that other mechanism/s operating independently of shared ancestry also contributed to endophyte effects on disease severity. Indeed, a second experiment showed that Cladosporium endophyte exudates (no live organism) from divergent species groups equally reduced disease severity. Our results reveal that multiple mechanisms contribute to the protective effects of an endophyte against a plant pathogen, but not all traits underlying these mechanisms are phylogenetically conserved.


Subject(s)
Basidiomycota , Plant Diseases , Basidiomycota/genetics , Cladosporium/genetics , Endophytes , Fungi , Phylogeny , Plant Diseases/microbiology , Plants/microbiology
7.
Mycologia ; 113(6): 1169-1180, 2021.
Article in English | MEDLINE | ID: mdl-34543153

ABSTRACT

Fungal symbionts occur in all plant tissues, and many aid their host plants with critical functions, including nutrient acquisition, defense against pathogens, and tolerance of abiotic stress. "Core" taxa in the plant mycobiome, defined as fungi present across individuals, populations, or time, may be particularly crucial to plant survival during the challenging seedling stage. However, studies on core seed fungi are limited to individual sampling sites, raising the question of whether core taxa exist across large geographic scales. We addressed this question using both culture-based and culture-free techniques to identify the fungi found in individual seeds collected from nine provenances across the range of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), a foundation tree species in the Pacific Northwest and a globally important timber crop that is propagated commercially by seed. Two key findings emerged: (i) Seed mycobiome composition differed among seed provenances. (ii) Despite variation in the seed mycobiome, we detected four core members, none of which is a known pathogen of Douglas-fir: Trichoderma spp., Hormonema macrosporum, Mucor plumbeus, and Talaromyces rugulosus. Our results support the concept of a core seed microbiome, yet additional work is needed to determine the functional consequences of core taxa for seedling germination, growth, survival, and competition.


Subject(s)
Mycobiome , Pseudotsuga , Humans , Pseudotsuga/microbiology , Seedlings , Seeds , Trees
8.
Pathogens ; 10(6)2021 May 24.
Article in English | MEDLINE | ID: mdl-34074042

ABSTRACT

Plants harbor a diverse community of microbes, whose interactions with their host and each other can influence plant health and fitness. While microbiota in plant vegetative tissues has been extensively studied, less is known about members of the seed microbiota. We used culture-based surveys to identify bacteria and fungi found in the seeds of the model tree, Populus trichocarpa, collected from different sites. We found that individual P. trichocarpa seeds typically contained zero or one microbe, with common taxa including species of Cladosporium, Aureobasidium, Diaporthe, Alternaria, and Pseudomonas, a bacterium. Pseudomonas isolates were associated with seed mortality and were negatively associated with the occurrence of fungal isolates within Epicoccum, Alternaria, and Aureobasidium from the same seed. Next, we conducted an inoculation experiment with one of the isolated seed microbes, Pseudomonas syringae pv. syringae, and found that it reduced seed germination and increased seedling mortality for P. trichocarpa. Our findings highlight common fungi and bacteria in the seeds of P. trichocarpa, prompting further study of their functional consequences. Moreover, our study confirms that P. syringae pv. syringae is a seed pathogen of P. trichocarpa and is the first report that P. syringae pv. syringae is a lethal seedling pathogen of P. trichocarpa, allowing for future work on the pathogenicity of this bacterium in seedlings and potential antagonism with other seed microbes.

9.
Glob Chang Biol ; 27(17): 4154-4168, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34022078

ABSTRACT

Free-air CO2 enrichment (FACE) experiments have elucidated how climate change affects plant physiology and production. However, we lack a predictive understanding of how climate change alters interactions between plants and endophytes, critical microbial mediators of plant physiology and ecology. We leveraged the SoyFACE facility to examine how elevated [CO2 ] affected soybean (Glycine max) leaf endophyte communities in the field. Endophyte community composition changed under elevated [CO2 ], including a decrease in the abundance of a common endophyte, Methylobacterium sp. Moreover, Methylobacterium abundance was negatively correlated with co-occurring fungal endophytes. We then assessed how Methylobacterium affected the growth of co-occurring endophytic fungi in vitro. Methylobacterium antagonized most co-occurring fungal endophytes in vitro, particularly when it was more established in culture before fungal introduction. Variation in fungal response to Methylobacterium within a single fungal operational taxonomic unit (OTU) was comparable to inter-OTU variation. Finally, fungi isolated from elevated vs. ambient [CO2 ] plots differed in colony growth and response to Methylobacterium, suggesting that increasing [CO2 ] may affect fungal traits and interactions within the microbiome. By combining in situ and in vitro studies, we show that elevated [CO2 ] decreases the abundance of a common bacterial endophyte that interacts strongly with co-occurring fungal endophytes. We suggest that endophyte responses to global climate change will have important but largely unexplored implications for both agricultural and natural systems.


Subject(s)
Carbon Dioxide , Endophytes , Fungi , Plant Leaves , Glycine max
10.
Front Microbiol ; 11: 573056, 2020.
Article in English | MEDLINE | ID: mdl-33281769

ABSTRACT

The conventional definition of endophytes is that they do not cause disease, whereas pathogens do. Complicating this convention, however, is the poorly explored phenomenon that some microbes are endophytes in some plants but pathogens in others. Black cottonwood or poplar (Populus trichocarpa) and wheat (Triticum aestivum) are common wild and crop plants, respectively, in the Pacific Northwest USA. The former anchors wild, riparian communities, whereas the latter is an introduced domesticate of commercial importance in the region. We isolated Fusarium culmorum - a well-known pathogen of wheat causing both blight and rot - from the leaf of a black cottonwood tree in western Washington. The pathogenicity of this cottonwood isolate and of a wheat isolate of F. culmorum were compared by inoculating both cottonwood and wheat in a greenhouse experiment. We found that both the cottonwood and wheat isolates of F. culmorum significantly reduced the growth of wheat, whereas they had no impact on cottonwood growth. Our results demonstrate that the cottonwood isolate of F. culmorum is endophytic in one plant species but pathogenic in another. Using sequence-based methods, we found an additional 56 taxa in the foliar microbiome of cottonwood that matched the sequences of pathogens of other plants of the region. These sequence-based findings suggest, though they do not prove, that P. trichocarpa may host many additional pathogens of other plants.

11.
Curr Biol ; 30(16): 3260-3266.e5, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32679100

ABSTRACT

The composition of host-associated microbiomes can have important consequences for host health and fitness [1-3]. Yet we still lack understanding of many fundamental processes that determine microbiome composition [4, 5]. There is mounting evidence that historical contingency during microbiome assembly may overshadow more deterministic processes, such as the selective filters imposed by host traits [6-8]. More specifically, species arrival order has been frequently shown to affect microbiome composition [9-12], a phenomenon known as priority effects [13-15]. However, it is less clear whether priority effects during microbiome assembly are consequential for the host [16] or whether intraspecific variation in host traits can alter the trajectory of microbiome assembly under priority effects. In a greenhouse inoculation experiment using the black cottonwood (Populus trichocarpa) foliar microbiome, we manipulated host genotype and the colonization order of common foliar fungi. We quantified microbiome assembly outcomes using fungal marker gene sequencing and measured susceptibility of the colonized host to a leaf rust pathogen, Melampsora × columbiana. We found that the effect of species arrival order on microbiome composition, and subsequent disease susceptibility, depended on the host genotype. Additionally, we found that microbiome assembly history can affect host disease susceptibility independent of microbiome composition at the time of pathogen exposure, suggesting that the interactive effects of species arrival order and host genotype can decouple community composition and function. Overall, these results highlight the importance of a key process underlying stochasticity in microbiome assembly while also revealing which hosts are most likely to experience these effects.


Subject(s)
Basidiomycota/physiology , Microbiota , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Populus/metabolism , Populus/microbiology
12.
Biol Rev Camb Philos Soc ; 95(2): 409-433, 2020 04.
Article in English | MEDLINE | ID: mdl-31763752

ABSTRACT

Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.


Subject(s)
Fungi/physiology , Plants/microbiology , Animals , Databases, Factual , Ecosystem , Fungi/genetics
13.
New Phytol ; 225(5): 2152-2165, 2020 03.
Article in English | MEDLINE | ID: mdl-31657460

ABSTRACT

Plant genotype strongly affects disease resistance, and also influences the composition of the leaf microbiome. However, these processes have not been studied and linked in the microevolutionary context of breeding for improved disease resistance. We hypothesised that broad-spectrum disease resistance alleles also affect colonisation by nonpathogenic symbionts. Quantitative trait loci (QTL) conferring resistance to multiple fungal pathogens were introgressed into a disease-susceptible maize inbred line. Bacterial and fungal leaf microbiomes of the resulting near-isogenic lines were compared with the microbiome of the disease-susceptible parent line at two time points in multiple fields. Introgression of QTL from disease-resistant lines strongly shifted the relative abundance of diverse fungal and bacterial taxa in both 3-wk-old and 7-wk-old plants. Nevertheless, the effects on overall community structure and diversity were minor and varied among fields and years. Contrary to our expectations, host genotype effects were not any stronger in fields with high disease pressure than in uninfected fields, and microbiome succession over time was similar in heavily infected and uninfected plants. These results show that introgressed QTL can greatly improve broad-spectrum disease resistance while having only limited and inconsistent pleiotropic effects on the leaf microbiome in maize.


Subject(s)
Disease Resistance , Microbiota , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Plant Leaves , Zea mays/genetics
14.
Ecol Evol ; 9(12): 6860-6868, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31380021

ABSTRACT

Plant defense against pathogens includes a range of mechanisms, including, but not limited to, genetic resistance, pathogen-antagonizing endophytes, and pathogen competitors. The relative importance of each mechanism can be expressed in a hierarchical view of defense. Several recent studies have shown that pathogen antagonism is inconsistently expressed within the plant defense hierarchy. Our hypothesis is that the hierarchy is governed by contingency rules that determine when and where antagonists reduce plant disease severity.Here, we investigated whether pathogen competition influences pathogen antagonism using Populus as a model system. In three independent field experiments, we asked whether competition for leaf mesophyll cells between a Melampsora rust pathogen and a microscopic, eriophyid mite affects rust pathogen antagonism by fungal leaf endophytes. The rust pathogen has an annual, phenological disadvantage in competition with the mite because the rust pathogen must infect its secondary host in spring before infecting Populus. We varied mite-rust competition by utilizing Populus genotypes characterized by differential genetic resistance to the two organisms. We inoculated plants with endophytes and allowed mites and rust to infect plants naturally.Two contingency rules emerged from the three field experiments: (a) Pathogen antagonism by endophytes can be preempted by host genes for resistance that suppress pathogen development, and (b) pathogen antagonism by endophytes can secondarily be preempted by competitive exclusion of the rust by the mite. Synthesis: Our results point to a Populus defense hierarchy with resistance genes on top, followed by pathogen competition, and finally pathogen antagonism by endophytes. We expect these rules will help to explain the variation in pathogen antagonism that is currently attributed to context dependency.

15.
PLoS One ; 13(11): e0207839, 2018.
Article in English | MEDLINE | ID: mdl-30475884

ABSTRACT

Schizoempodium mesophyllincola is an eriophyid mite that feeds in leaves of Populus trichocarpa in the central part of this cottonwood tree's range (i.e., coastal British Columbia, Washington and Oregon) in the Pacific Northwest (PNW) of North America, and on some interspecific hybrids planted in short-rotation, intensive forestry in the region. The mite, a leaf vagrant, sucks the contents of spongy mesophyll cells, causing leaf discoloration, or "bronzing." Here, we investigate the inheritance pattern of resistance to leaf bronzing using a three-generation Populus trichocarpa x P. deltoides hybrid pedigree. We found that resistance to the mite is an exaptation in that its source in two related F2 families of the TxD hybrid pedigree was the non-native host, P. deltoides. Two grandparental genotypes of the latter, 'ILL-5' and 'ILL-129', were completely free of the bronzing symptom and that phenotype was inherited in a Mendelian manner in the F1 and F2. Resistance to S. mesophyllincola is similar to resistance to many other regional pathogens of P. trichocarpa (e.g., Melampsora occidentalis, Venturia inopina, Sphaerulina populicola, and Taphrina sp.) in that it is inherited from the non-native grandparent (e.g., P. deltoides, P. nigra, or P. maximowiczii) in three-generation, hybrid pedigrees. In addition to finding evidence for Mendelian inheritance, we found two QTLs with LOD scores 5.03 and 3.12 mapped on linkage groups (LG) III and I, and they explained 6.7 and 4.2% of the phenotypic variance, respectively. The LG I QTL is close to, or synonymous with, one for resistance to sap-feeding arthropods and leaf developmental traits as expressed in a British study utilizing the same pedigree.


Subject(s)
Crosses, Genetic , Mites/physiology , Populus/genetics , Populus/physiology , Animal Feed , Animals , Chromosome Mapping , Pedigree , Phenotype , Quantitative Trait Loci/genetics
16.
Methods Mol Biol ; 1848: 39-51, 2018.
Article in English | MEDLINE | ID: mdl-30182227

ABSTRACT

High-throughput sequencing of taxon-specific loci, or DNA metabarcoding, has become an invaluable tool for investigating the composition of plant-associated fungal communities and for elucidating plant-fungal interactions. While sequencing fungal communities has become routine, there remain numerous potential sources of systematic error that can introduce biases and compromise metabarcoding data. This chapter presents a protocol for DNA metabarcoding of the leaf mycobiome based on current best practices to minimize errors through careful laboratory practices and validation.


Subject(s)
DNA, Fungal , High-Throughput Nucleotide Sequencing , Mycobiome , Plant Leaves/microbiology , Biodiversity , Computational Biology/methods , DNA Barcoding, Taxonomic , Endophytes , Gene Library , Sequence Analysis, DNA
17.
Front Microbiol ; 9: 1645, 2018.
Article in English | MEDLINE | ID: mdl-30108556

ABSTRACT

The plant microbiome may be bottlenecked at the level of endophytes of individual seeds. Strong defense of developing seeds is predicted by optimal defense theory, and we have experimentally demonstrated exclusionary interactions among endophytic microbes infecting individual seeds of Centaurea stoebe. Having found a single, PDA-culturable microbe per seed or none in an exploratory study with Centaurea stoebe, we completed a more extensive survey of an additional 98 plant species representing 39 families. We again found that individual, surface-sterilized seeds of all species hosted only one PDA-culturable bacterial or fungal endophyte per seed, or none. PDA-unculturables were not determined but we expect them to also be bottlenecked in individual seeds, as they too should be governed by exclusionary interactions. If the bottleneck were confirmed with high-throughput sequencing of individual seeds then it would make sense to further investigate the Primary Symbiont Hypothesis (PSH). This includes the prediction that primary symbionts (i.e., the winners of the exclusionary battles among seed endophytes) have strong effects on seedlings depending on symbiont identity.

18.
PLoS Biol ; 15(3): e2001793, 2017 03.
Article in English | MEDLINE | ID: mdl-28350798

ABSTRACT

Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes-i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance-into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host-microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply.


Subject(s)
Agriculture/methods , Conservation of Natural Resources/trends , Microbiota , Plants/microbiology , Research , Food Supply , Research Design
19.
New Phytol ; 209(4): 1681-92, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26565565

ABSTRACT

Nonpathogenic foliar fungi (i.e. endophytes and epiphytes) can modify plant disease severity in controlled experiments. However, experiments have not been combined with ecological studies in wild plant pathosystems to determine whether disease-modifying fungi are common enough to be ecologically important. We used culture-based methods and DNA sequencing to characterize the abundance and distribution of foliar fungi of Populus trichocarpa in wild populations across its native range (Pacific Northwest, USA). We conducted complementary, manipulative experiments to test how foliar fungi commonly isolated from those populations influence the severity of Melampsora leaf rust disease. Finally, we examined correlative relationships between the abundance of disease-modifying foliar fungi and disease severity in wild trees. A taxonomically and geographically diverse group of common foliar fungi significantly modified disease severity in experiments, either increasing or decreasing disease severity. Spatial patterns in the abundance of some of these foliar fungi were significantly correlated (in predicted directions) with disease severity in wild trees. Our study reveals that disease modification is an ecological function shared by common foliar fungal symbionts of P. trichocarpa. This finding raises new questions about plant disease ecology and plant biodiversity, and has applied potential for disease management.


Subject(s)
Basidiomycota/physiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Populus/microbiology , Likelihood Functions , Linear Models , Trees/microbiology , Trees/physiology
20.
Plant Mol Biol ; 90(6): 645-55, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26646287

ABSTRACT

Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.


Subject(s)
Endophytes/physiology , Fungi/physiology , Plant Diseases/microbiology , Plants/microbiology , Alternaria/pathogenicity , Biodiversity , Cladosporium/pathogenicity , Fusarium/pathogenicity , Host-Pathogen Interactions , Microbiota
SELECTION OF CITATIONS
SEARCH DETAIL
...