Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1265390, 2023.
Article in English | MEDLINE | ID: mdl-38260909

ABSTRACT

Background: Rifampicin (RIF) is a key first-line drug used to treat tuberculosis, a primarily pulmonary disease caused by Mycobacterium tuberculosis. RIF resistance is caused by mutations in rpoB, at the cost of slower growth and reduced transcription efficiency. Antibiotic resistance to RIF is prevalent despite this fitness cost. Compensatory mutations in rpoABC genes have been shown to alleviate the fitness cost of rpoB:S450L, explaining how RIF resistant strains harbor this mutation can spread so rapidly. Unfortunately, the full set of RIF compensatory mutations is still unknown, particularly those compensating for rarer RIF resistance mutations. Objectives: We performed an association study on a globally representative set of 4,309 whole genome sequenced clinical M. tuberculosis isolates to identify novel putative compensatory mutations, determine the prevalence of known and previously reported putative compensatory mutations, and determine which RIF resistance markers associate with these compensatory mutations. Results and conclusions: Of the 1,079 RIF resistant isolates, 638 carried previously reported putative and high-probability compensatory mutations. Our strict criteria identified 46 additional mutations in rpoABC for which no strong prior evidence of their compensatory role exists. Of these, 35 have previously been reported. As such, our independent corroboration adds to the mounting evidence that these 35 also carry a compensatory role. The remaining 11 are novel putative compensatory markers, reported here for the first time. Six of these 11 novel putative compensatory mutations had two or more mutation events. Most compensatory mutations appear to be specifically compensating for the fitness loss due to rpoB:S450L. However, an outbreak of 22 closely related isolates each carried three rpoB mutations, the rare RIFR markers D435G and L452P and the putative compensatory mutation I1106T. This suggests compensation may require specific combinations of rpoABC mutations. Here, we report only mutations that met our very strict criteria. It is highly likely that many additional rpoABC mutations compensate for rare resistance-causing mutations and therefore did not carry the statistical power to be reported here. These findings aid in the identification of RIF resistant M. tuberculosis strains with restored fitness, which pose a greater risk of causing resistant outbreaks.

2.
Antimicrob Agents Chemother ; 66(6): e0207521, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35532237

ABSTRACT

Point mutations in the rrs gene and the eis promoter are known to confer resistance to the second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer the majority of SLID resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1,184 clinical Mycobacterium tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, and 270 AMK-R, CAP-R, and KAN-R isolates, 274 (84.3%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 103 of the phenotypically resistant isolates. A genome-wide association study identified three genes and promoters with mutations that, on aggregate, were associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 5'-untranslated-region mutations with KAN resistance, supporting clinical relevance for this previously demonstrated mechanism of KAN resistance. We also provide evidence for the novel association of CAP resistance with the promoter of the Rv2680-Rv2681 operon, which encodes an exoribonuclease that may influence the binding of CAP to the ribosome. Aggregating mutations by gene can provide additional insight and therefore is recommended for identifying rare mechanisms of resistance when individual mutations carry insufficient statistical power.


Subject(s)
Drug Resistance, Multiple, Bacterial , Mycobacterium tuberculosis , Amikacin/pharmacology , Antitubercular Agents/pharmacology , Capreomycin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Markers , Genome-Wide Association Study , Kanamycin/pharmacology , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics
3.
Microb Genom ; 7(3)2021 03.
Article in English | MEDLINE | ID: mdl-33502304

ABSTRACT

Whole-genome sequencing (WGS) is fundamental to Mycobacterium tuberculosis basic research and many clinical applications. Coverage across Illumina-sequenced M. tuberculosis genomes is known to vary with sequence context, but this bias is poorly characterized. Here, through a novel application of phylogenomics that distinguishes genuine coverage bias from deletions, we discern Illumina 'blind spots' in the M. tuberculosis reference genome for seven sequencing workflows. We find blind spots to be widespread, affecting 529 genes, and provide their exact coordinates, enabling salvage of unaffected regions. Fifty-seven pe/ppe genes (the primary families assumed to exhibit Illumina bias) lack blind spots entirely, while the remaining pe/ppe genes account for 55.1 % of blind spots. Surprisingly, we find coverage bias persists in homopolymers as short as 6 bp, shorter tracts than previously reported. While G+C-rich regions challenge all Illumina sequencing workflows, a modified Nextera library preparation that amplifies DNA with a high-fidelity polymerase markedly attenuates coverage bias in G+C-rich and homopolymeric sequences, expanding the 'Illumina-sequenceable' genome. Through these findings, and by defining workflow-specific exclusion criteria, we spotlight effective strategies for handling bias in M. tuberculosis Illumina WGS. This empirical analysis framework may be used to systematically evaluate coverage bias in other species using existing sequencing data.


Subject(s)
High-Throughput Nucleotide Sequencing/standards , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Bias , Gene Library , Genome, Bacterial , High-Throughput Nucleotide Sequencing/methods , Humans , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/isolation & purification , Whole Genome Sequencing/methods , Whole Genome Sequencing/standards , Workflow
4.
Elife ; 92020 10 27.
Article in English | MEDLINE | ID: mdl-33107429

ABSTRACT

This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-methylome mapping corrected methyltransferase variant effects previously obscured by reference-based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic cultures, which we formalize as 'intercellular mosaic methylation' (IMM). Mutation-driven IMM was nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is widespread and associated with differential expression in the ΔhsdM transcriptome, suggesting promoter HsdM-methylation directly influences transcription. Finally, comparative and functional analyses identified 351 sites hypervariable across isolates and numerous putative regulatory interactions. This multi-omic integration revealed features of methylomic variability in clinical isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation in MTBC physiology and adaptive evolution.


Subject(s)
Adenine/metabolism , DNA Methylation , Epigenome , Genetic Variation , Mycobacterium tuberculosis/genetics , Mutation , Mycobacterium tuberculosis/metabolism
6.
Sci Rep ; 9(1): 4474, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872748

ABSTRACT

Tuberculosis (TB) represents a significant challenge to public health authorities, especially with the emergence of drug-resistant (DR) and multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis. We sought to examine the genomic variations among recently isolated strains of M. tuberculosis in two closely related countries with different population demography in the Middle East. Clinical isolates of M. tuberculosis from both Egypt and Saudi Arabia were subjected to phenotypic and genotypic analysis on gene and genome-wide levels. Isolates with MDR phenotypes were highly prevalent in Egypt (up to 35%) despite its relatively stable population structure (sympatric pattern). MDR-TB isolates were not identified in the isolates from Saudi Arabia despite its active guest worker program (allopatric pattern). However, tuberculosis isolates from Saudi Arabia, where lineage 4 was more prevalent (>65%), showed more diversity than isolates from Egypt, where lineage 3 was the most prevalent (>75%). Phylogenetic and molecular dating analyses indicated that lineages from Egypt were recently diverged (~78 years), whereas those from Saudi Arabia were diverged by over 200 years. Interestingly, DR isolates did not appear to cluster together or spread more widely than drug-sensitive isolates, suggesting poor treatment as the main cause for emergence of drug resistance rather than more virulence or more capacity to persist.


Subject(s)
Drug Resistance, Bacterial , Mycobacterium tuberculosis/classification , Tuberculosis, Multidrug-Resistant/epidemiology , Whole Genome Sequencing/methods , Adolescent , Adult , Aged , Child , Child, Preschool , Egypt/epidemiology , Female , Humans , Infant , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Phylogeny , Prevalence , Saudi Arabia/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Young Adult
7.
Emerg Microbes Infect ; 4(7): e42, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26251830

ABSTRACT

We report the discovery and confirmation of 23 novel mutations with previously undocumented role in isoniazid (INH) drug resistance, in catalase-peroxidase (katG) gene of Mycobacterium tuberculosis (Mtb) isolates. With these mutations, a synonymous mutation in fabG1 (g609a), and two canonical mutations, we were able to explain 98% of the phenotypic resistance observed in 366 clinical Mtb isolates collected from four high tuberculosis (TB)-burden countries: India, Moldova, Philippines, and South Africa. We conducted overlapping targeted and whole-genome sequencing for variant discovery in all clinical isolates with a variety of INH-resistant phenotypes. Our analysis showed that just two canonical mutations (katG 315AGC-ACC and inhA promoter-15C-T) identified 89.5% of resistance phenotypes in our collection. Inclusion of the 23 novel mutations reported here, and the previously documented point mutation in fabG1, increased the sensitivity of these mutations as markers of INH resistance to 98%. Only six (2%) of the 332 resistant isolates in our collection did not harbor one or more of these mutations. The third most prevalent substitution, at inhA promoter position -8, present in 39 resistant isolates, was of no diagnostic significance since it always co-occurred with katG 315. 79% of our isolates harboring novel mutations belong to genetic group 1 indicating a higher tendency for this group to go down an uncommon evolutionary path and evade molecular diagnostics. The results of this study contribute to our understanding of the mechanisms of INH resistance in Mtb isolates that lack the canonical mutations and could improve the sensitivity of next generation molecular diagnostics.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Catalase/genetics , Drug Resistance, Bacterial/genetics , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/isolation & purification , Oxidoreductases/genetics , Promoter Regions, Genetic/genetics , Tuberculosis/microbiology
8.
Antimicrob Agents Chemother ; 59(9): 5267-77, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26077261

ABSTRACT

Pyrazinamide (PZA) is an important first-line drug in the treatment of tuberculosis (TB) and of significant interest to the HIV-infected community due to the prevalence of TB-HIV coinfection in some regions of the world. The mechanism of resistance to PZA is unlike that of any other anti-TB drug. The gene pncA, encoding pyrazinamidase (PZase), is associated with resistance to PZA. However, because single mutations in PZase have a low prevalence, the individual sensitivities are low. Hundreds of distinct mutations in the enzyme have been associated with resistance, while some only appear in susceptible isolates. This makes interpretation of molecular testing difficult and often leads to the simplification that any PZase mutation causes resistance. This systematic review reports a comprehensive global list of mutations observed in PZase and its promoter region in clinical strains, their phenotypic association, their global frequencies and diversity, the method of phenotypic determination, their MIC values when given, and the method of MIC determination and assesses the strength of the association between mutations and phenotypic resistance to PZA. In this systematic review, we report global statistics for 641 mutations in 171 (of 187) codons from 2,760 resistant strains and 96 mutations from 3,329 susceptible strains reported in 61 studies. For diagnostics, individual mutations (or any subset) were not sufficiently sensitive. Assuming similar error profiles of the 5 phenotyping platforms included in this study, the entire enzyme and its promoter provide a combined estimated sensitivity of 83%. This review highlights the need for identification of an alternative mechanism(s) of resistance, at least for the unexplained 17% of cases.


Subject(s)
Amidohydrolases/genetics , Amidohydrolases/metabolism , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Pyrazinamide/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics
9.
J Comp Neurol ; 520(11): 2440-58, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22247040

ABSTRACT

The amygdala provides the medial prefrontal cortex (mPFC; areas 25, 32, and 24b) with salient emotional information. This study investigated the synaptic connectivity of identified amygdalocortical boutons (ACBs; labeled anterogradely following injections of Phaseolus vulgaris leucoagglutinin into the basolateral nucleus of the amygdala), with the dendritic processes of identified layer 5 corticospinal neurons in the rat mPFC. The corticospinal (CS) neurons in the mPFC had been retrogradely labeled with rhodamine fluorescent latex microspheres and subsequently intracellularly filled with biotinylated lucifer yellow to visualize their basal and apical dendrites. Two main classes of mPFC CS neurons were identified. Type 1 cells had apical dendrites bearing numerous dendritic spines with radiate basal dendritic arbors. Type 2 cells possessed apical dendrites with greatly reduced spine densities and a broad range of basal dendritic tree morphologies. Identified ACBs made asymmetric synaptic junctions with labeled dendritic spines and the labeled apical and basal dendritic shafts of identified CS neurons. On average, eight ACBs were closely associated with the labeled basal dendritic arbors of type 1 CS neurons and five ACBs with type 2 CS basal dendrites. The mean Scholl distance of ACBs from CS somata (for both types 1 and 2 cells) was 66 µm-coinciding with a region containing the highest length density of CS neuron basal dendrites. These results indicate that neurons in the BLA can monosynaptically influence CS neurons in the mPFC that project to autonomic regions of the thoracic spinal cord and probably to other additional subcortical target regions, such as the lateral hypothalamus.


Subject(s)
Afferent Pathways/ultrastructure , Amygdala/ultrastructure , Prefrontal Cortex/ultrastructure , Pyramidal Tracts/ultrastructure , Synapses/ultrastructure , Animals , Male , Neuroanatomical Tract-Tracing Techniques , Neurons, Afferent/classification , Neurons, Afferent/ultrastructure , Presynaptic Terminals/ultrastructure , Rats , Rats, Sprague-Dawley
10.
J Comp Neurol ; 492(2): 145-77, 2005 Nov 14.
Article in English | MEDLINE | ID: mdl-16196030

ABSTRACT

This paper describes the quantitative areal and laminar distribution of identified neuron populations projecting from areas of prefrontal cortex (PFC) to subcortical autonomic, motor, and limbic sites in the rat. Injections of the retrograde pathway tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were made into dorsal/ventral striatum (DS/VS), basolateral amygdala (BLA), mediodorsal thalamus (MD), lateral hypothalamus (LH), mediolateral septum, dorsolateral periaqueductal gray, dorsal raphe, ventral tegmental area, parabrachial nucleus, nucleus tractus solitarius, rostral/caudal ventrolateral medulla, or thoracic spinal cord (SC). High-resolution flat-map density distributions of retrogradely labelled neurons indicated that specific PFC regions were differentially involved in the projections studied, with medial (m)PFC divided into dorsal and ventral sectors. The percentages that WGA-HRP retrogradely labelled neurons composed of the projection neurons in individual layers of infralimbic (IL; area 25) prelimbic (PL; area 32), and dorsal anterior cingulate (ACd; area 24b) cortices were calculated. Among layer 5 pyramidal cells, approximately 27.4% in IL/PL/ACd cortices projected to LH, 22.9% in IL/ventral PL to VS, 18.3% in ACd/dorsal PL to DS, and 8.1% in areas IL/PL to BLA; and 37% of layer 6 pyramidal cells in IL/PL/ACd projected to MD. Data for other projection pathways are given. Multiple dual retrograde fluorescent tracing studies indicated that moderate populations (<9%) of layer 5 mPFC neurons projected to LH/VS, LH/SC, or VS/BLA. The data provide new quantitative information concerning the density and distribution of neurons involved in identified projection pathways from defined areas of the rat PFC to specific subcortical targets involved in dynamic goal-directed behavior.


Subject(s)
Autonomic Nervous System/anatomy & histology , Efferent Pathways/anatomy & histology , Limbic System/anatomy & histology , Motor Cortex/anatomy & histology , Prefrontal Cortex/anatomy & histology , Animals , Horseradish Peroxidase/chemistry , Imaging, Three-Dimensional , Male , Neurons/cytology , Rats , Rats, Sprague-Dawley , Staining and Labeling , Wheat Germ Agglutinins/chemistry
11.
Brain Res ; 946(2): 314-22, 2002 Aug 16.
Article in English | MEDLINE | ID: mdl-12137936

ABSTRACT

Immunocytochemical and ultrastructural evidence is presented indicating that direct inputs from the hippocampal CA1 field to prelimbic (area 32) and infralimbic (area 25) cortices in the rat, innervate not only 'spiny' (presumed pyramidal) neurons but also monosynaptically contact NADPH-diaphorase reactive cells and parvalbumin-containing local circuit neurons-the latter cell type is shown to be GABA immunoreactive. Similar evidence of direct CA1 input to local circuit neurons containing either calbindin or calretinin was not found.


Subject(s)
Hippocampus/physiology , NADPH Dehydrogenase/metabolism , Neurons, Afferent/physiology , Parvalbumins/physiology , Prefrontal Cortex/physiology , Synapses/physiology , Afferent Pathways/cytology , Afferent Pathways/metabolism , Afferent Pathways/physiology , Animals , Calbindin 2 , Calbindins , Electrophysiology , Hippocampus/cytology , Hippocampus/ultrastructure , Immunohistochemistry , Limbic System/metabolism , Limbic System/physiology , Male , Neurons, Afferent/ultrastructure , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , S100 Calcium Binding Protein G/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...