Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Entomol ; 50(6): 1257-1266, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34492115

ABSTRACT

Pterostichus melanarius (Illiger, 1798) is a Palearctic generalist predator native to Europe. It was unintentionally introduced to North America at least twice in the mid 1920s and has since become widespread in Canada and the United States. Although P. melanarius is a valuable natural enemy in many different agricultural systems, we are not aware of any effort to compile in one publication details of its life history, diet, distribution, and factors that influence its populations. Some studies in North America have investigated the effects of P. melanarius on pest species and native carabid assemblages. Moreover, given that it is an exotic species whose range appears to still be expanding, it will be valuable to predict its potential distribution in North America. Therefore, the goals of this paper are to: 1) compile information on the life history and biology of P. melanarius, 2) review the effects of various agricultural practices on this species, and 3) use ecological niche modeling to determine the potential range of P. melanarius in the United States and which climate variables are most important for range expansion. Our review revealed that P. melanarius appears to provide benefits most consistently in diverse agricultural systems managed with no-till or reduced till methods, whereas our modeling revealed that P. melanarius likely occupies, or will occupy, more of the northern U.S. than is currently recognized, particularly in the Appalachian and Rocky Mountain regions.


Subject(s)
Coleoptera , Agriculture , Animals , Biology , Ecosystem , North America
2.
Virus Res ; 241: 172-184, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28688850

ABSTRACT

As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis.


Subject(s)
Avena/virology , Edible Grain/growth & development , Luteoviridae/growth & development , Panicum/virology , Plant Roots/growth & development , RNA Interference , Triticum/virology , Amino Acid Sequence , Animals , Aphids/virology , Avena/growth & development , Base Sequence , Edible Grain/virology , Luteoviridae/genetics , Panicum/growth & development , Plant Roots/physiology , Plant Roots/virology , Sequence Analysis, RNA , Triticum/growth & development
3.
Biochem J ; 435(1): 267-76, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21265737

ABSTRACT

Saturated fatty acids promote lipotoxic ER (endoplasmic reticulum) stress in pancreatic ß-cells in association with Type 2 diabetes. To address the underlying mechanisms we employed MS in a comprehensive lipidomic screen of MIN6 ß-cells treated for 48 h with palmitate. Both the overall mass and the degree of saturation of major neutral lipids and phospholipids were only modestly increased by palmitate. The mass of GlcCer (glucosylceramide) was augmented by 70% under these conditions, without any significant alteration in the amounts of either ceramide or sphingomyelin. However, flux into ceramide (measured by [3H]serine incorporation) was augmented by chronic palmitate, and inhibition of ceramide synthesis decreased both ER stress and apoptosis. ER-to-Golgi protein trafficking was also reduced by palmitate pre-treatment, but was overcome by overexpression of GlcCer synthase. This was accompanied by increased conversion of ceramide into GlcCer, and reduced ER stress and apoptosis, but no change in phospholipid desaturation. Sphingolipid alterations due to palmitate were not secondary to ER stress since they were neither reproduced by pharmacological ER stressors nor overcome using the chemical chaperone phenylbutyric acid. In conclusion, alterations in sphingolipid, rather than phospholipid, metabolism are more likely to be implicated in the defective protein trafficking and enhanced ER stress and apoptosis of lipotoxic ß-cells.


Subject(s)
Endoplasmic Reticulum/metabolism , Insulin-Secreting Cells/metabolism , Palmitic Acid/metabolism , Sphingolipids/metabolism , Stress, Physiological , Animals , Apoptosis , Biomarkers/metabolism , Cell Line , Endoplasmic Reticulum/drug effects , Enzyme Inhibitors/pharmacology , Glucosylceramides/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Insulin-Secreting Cells/drug effects , Lipid Metabolism , Metabolomics/methods , Mice , Palmitic Acid/adverse effects , Phenylbutyrates/pharmacology , Protein Biosynthesis , Protein Transport , Serine C-Palmitoyltransferase/antagonists & inhibitors , Stress, Physiological/drug effects , Thapsigargin/toxicity , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Tunicamycin/toxicity
4.
Diabetes ; 54(10): 2917-24, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16186393

ABSTRACT

Increased availability of fatty acids causes cell death and dysfunction in beta-cell lines, isolated islets, and animal models of diabetes. From the MIN6 beta-cell line, we selected two subpools that are resistant to palmitate-induced apoptosis. Protection was not universal because palmitate-resistant cells remained sensitive to cytokine- and streptozotocin-induced apoptosis. Palmitate oxidation and incorporation into cholesterol ester (but not triglycerides) were significantly higher in palmitate-resistant cells than in control cells. Consistent with these findings, transcript profiling revealed increased expression in palmitate-resistant cells of several beta-oxidation genes as well as a 2.8-fold upregulation of stearoyl-CoA desaturase 1 (SCD1). Correspondingly, the oleate-to-palmitate ratio of palmitate-resistant cells was double that of palmitate-pretreated control cells. At least some of this additional oleate in palmitate-resistant cells was incorporated into cholesterol ester stored in the form of large cytosolic lipid bodies. However, blocking cholesterol ester formation did not render palmitate-resistant cells sensitive to palmitate-induced apoptosis. On the other hand, an inhibitor of SCD1, 10,12-conjugated linoleic acid, dose dependently overcame the resistance of palmitate-resistant cells to lipoapoptosis. Our results suggest that desaturation per se is more important in protecting beta-cells from the cytotoxic effects of palmitate than is the nature of neutral lipid storage pool thus generated.


Subject(s)
Apoptosis , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Islets of Langerhans/pathology , Palmitic Acid/toxicity , Stearoyl-CoA Desaturase/metabolism , Animals , Apoptosis/drug effects , Cholesterol Esters/metabolism , Drug Resistance , Islets of Langerhans/chemistry , Lipids/analysis , Mice , Oxidation-Reduction , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Stearoyl-CoA Desaturase/antagonists & inhibitors , Triglycerides/metabolism
5.
Diabetes ; 53 Suppl 1: S159-65, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14749282

ABSTRACT

Type 2 diabetes can be viewed as a failure of the pancreatic beta-cell to compensate for peripheral insulin resistance with enhanced insulin secretion. This failure is explained by both a relative loss of beta-cell mass as well as secretory defects that include enhanced basal secretion and a selective loss of sensitivity to glucose. These features are reproduced by chronic exposure of beta-cells to fatty acids (FAs), suggesting that hyperlipidemia might contribute to decompensation. Using MIN6 cells pretreated for 48 h with oleate or palmitate, we have previously defined alterations in global gene expression by transcript profiling and described additional secretory changes to those already established (Busch A-K, Cordery D, Denyer G, Biden TJ: Diabetes 51:977-987, 2002). In contrast to a modest decoupling of glucose-stimulated insulin secretion, FA pretreatment markedly enhanced the secretory response to an acute subsequent challenge with FAs. We propose that this apparent switch in sensitivity from glucose to FAs would be an appropriate response to hyperlipidemia in vivo and thus plays a positive role in beta-cell compensation for insulin resistance. Altered expression of dozens of genes could contribute to this switch, and allelic variations in any of these genes could (to varying degrees) impair beta-cell compensation and thus contribute to conditions ranging from impaired glucose tolerance to frank diabetes.


Subject(s)
Diabetes Mellitus/genetics , Fatty Acids/pharmacology , Islets of Langerhans/physiology , Animals , Diabetes Mellitus/physiopathology , Genomics , Humans , Hyperlipidemias/physiopathology , Islets of Langerhans/drug effects
6.
Diabetes ; 51(4): 977-87, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11916915

ABSTRACT

Chronic lipid exposure is implicated in beta-cell dysfunction in type 2 diabetes. We therefore used oligonucleotide arrays to define global alterations in gene expression in MIN6 cells after 48-h pretreatment with oleate or palmitate. Altogether, 126 genes were altered > or =1.9-fold by palmitate, 62 by oleate, and 46 by both lipids. Importantly, nine of the palmitate-regulated genes are known to be correspondingly changed in models of type 2 diabetes. A tendency toward beta-cell de-differentiation was also apparent with palmitate: pyruvate carboxylase and mitochondrial glycerol 3-phosphate dehydrogenase were downregulated, whereas lactate dehydrogenase and fructose 1,6-bisphosphatases were induced. Increases in the latter (also seen with oleate), along with glucosamine-phosphate N-acetyl transferase, imply upregulation of the hexosamine biosynthesis pathway in palmitate-treated cells. However, palmitate also increased expression of calcyclin and 25-kDa synaptosomal-associated protein (SNAP25), which control distal secretory processes. Consistent with these findings, secretory responses to noncarbohydrate stimuli, especially palmitate itself, were upregulated in palmitate-treated cells (much less so with oleate). Indeed, glucose-stimulated secretion was slightly sensitized by chronic palmitate exposure but inhibited by oleate treatment, whereas both lipids enhanced basal secretion. Oleate and palmitate also induced expression of chemokines (MCP-1 and GRO1 oncogene) and genes of the acute phase response (serum amyloid A3). Increases in transcriptional modulators such as ATF3, CCAAT/enhancer binding protein-beta (C/EBPbeta), C/EBPdelta, and c-fos were also seen. The results highlight links between regulated gene expression and phenotypic alterations in palmitate versus oleate-pretreated beta-cells.


Subject(s)
DNA Fingerprinting , Enzymes/genetics , Gene Expression Regulation/drug effects , Islets of Langerhans/physiology , Oleic Acid/pharmacology , Palmitic Acid/pharmacology , Acute-Phase Proteins/genetics , Animals , Cell Line , Chemokines/genetics , Genes, fos/drug effects , Glucose/pharmacology , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/drug effects , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL