Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 50(12): 3985-4003, 2019 12.
Article in English | MEDLINE | ID: mdl-31325398

ABSTRACT

A complex scenario of cellular network reorganization is caused by unilateral sensory deafferentation (USD) in the adult rat central auditory system. We asked whether this plasticity response involves mitosis. Immunohistochemistry was applied to brainstem sections for the detection and localization of mitotic markers Ki67 and PCNA, the growth-associated protein Gap43 and purine receptor P2X4. Fluorescent double staining was done for Ki67:PCNA and for both of them with HuC/HuD (neurons), S100 (astrocytes), Iba1 (microglia) and P2X4. Inquiring 1-7 days after USD, we found Ki67 expression to be changed in cellular profiles of cochlear nucleus (CN) with a significant increase in number by 1-3 days, followed by reset to control level within 1 week. USD-induced mitosis exclusively occurred in microglia and was absent elsewhere in the auditory brainstem. PCNA staining of small cellular profiles increased similarly but remained elevated. PCNA staining intensity also changed in CN, superior olive and inferior colliculus in neuronal nuclei, suggesting shifts in DNA processing. No apoptotic cell death was detected in any region of the adult auditory brainstem after USD. A comparison of anterograde and retrograde effects of nerve damage revealed proliferating microglia expressing P2X4 receptors in CN upon USD, but not in the facial nucleus after facial nerve transection. In conclusion, the deafferentation model studied here permits insight into the capacity of the adult mammalian brain to invoke mitosis among glia cells, adjustment of gene processing in neurons and purinergic signalling between them, jointly accounting for a multilayered neuro- and glioplastic response.


Subject(s)
Astrocytes/metabolism , Brain Stem/metabolism , DNA/metabolism , Neurons/metabolism , Animals , Auditory Pathways/metabolism , Cochlear Nucleus/metabolism , Inferior Colliculi/metabolism , Microglia/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...