Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 5(3)2018.
Article in English | MEDLINE | ID: mdl-30023428

ABSTRACT

Autism spectrum disorders (ASDs) are neurodevelopmental disorders with a strong genetic etiology. Since mutations in human SHANK genes have been found in patients with autism, genetic mouse models are used for a mechanistic understanding of ASDs and the development of therapeutic strategies. SHANKs are scaffold proteins in the postsynaptic density of mammalian excitatory synapses with proposed functions in synaptogenesis, regulation of dendritic spine morphology, and instruction of structural synaptic plasticity. In contrast to all studies so far on the function of SHANK proteins, we have previously observed enhanced synaptic plasticity in Shank2 Δex7-/- mice. In a series of experiments, we now reproduce these results, further explore the synaptic phenotype, and directly compare our model to the independently generated Shank2 Δex6-7-/- mice. Minimal stimulation experiments reveal that Shank2 Δex7-/- mice possess an excessive fraction of silent (i.e., α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, short, AMPA receptor lacking) synapses. The synaptic maturation deficit emerges during the third postnatal week and constitutes a plausible mechanistic explanation for the mutants' increased capacity for long-term potentiation, both in vivo and in vitro. A direct comparison with Shank2 Δex6-7-/- mice adds weight to the hypothesis that both mouse models show a different set of synaptic phenotypes, possibly due to differences in their genetic background. These findings add to the diversity of synaptic phenotypes in neurodevelopmental disorders and further support the supposed existence of "modifier genes" in the expression and inheritance of ASDs.


Subject(s)
Autism Spectrum Disorder/physiopathology , Long-Term Potentiation , Nerve Tissue Proteins/physiology , Synapses/physiology , Animals , Autism Spectrum Disorder/genetics , Disease Models, Animal , Hippocampus/physiology , Male , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Receptors, AMPA/physiology
2.
Neuropharmacology ; 115: 42-50, 2017 03 15.
Article in English | MEDLINE | ID: mdl-27267685

ABSTRACT

The metabotropic glutamate (mGlu) receptor, mGlu5, is of particular relevance for hippocampal function. It is critically required for the expression of long-term potentiation (LTP) and long-term depression (LTD), regulates neuronal oscillations, maintains the stability of place fields and is required for hippocampus-dependent memory. MGlu5-dysfunctions are associated with profound cognitive deficits in humans, and mGlu5 has been targeted as a putative cognitive enhancer. Cognitive enhancement, by means of environmental enrichment (EE) in rodents, results in improved hippocampal synaptic plasticity and memory. Here, we explored whether mGlu5 contributes to these enhancements. MGlu5-antagonism dose-dependently impaired the early phase of LTP (>4 h) in the CA1 region of young(3-4 month old) mice. Late-LTP (>24 h) was also impaired. LTP (>24 h) elicited in old (10-14 month old) mice displayed reduced sensitivity to mGlu5 antagonism. Short-term potentiation (STP, < 2 h) that was elicited by weaker afferent stimulation was unaffected by mGlu5-antagonism in both age-groups. EE significantly amplified STP (<2 h) in old and young animals, but did not increase the duration of synaptic potentiation, or promote induction of LTP. The improvement in STP was prevented by mGlu5-antagonism, in both young and old animals. These results indicate that modifications of the synapse that underlie improvements of LTP by EE require the contribution of mGlu5. Strikingly, although LTP in old mice does not critically depend on mGlu5, improvements in synaptic potentiation resulting from EE are mGlu5-dependent in old mice. Regarded in light of the known role for mGlu5 in hippocampal function and pathophysiology, these data suggest that mGlu5 regulation of synaptic information storage is pivotal to optimal hippocampal function. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.


Subject(s)
Environment , Hippocampus/physiology , Long-Term Potentiation/physiology , Receptor, Metabotropic Glutamate 5/physiology , Age Factors , Animals , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors
3.
Article in English | MEDLINE | ID: mdl-27818632

ABSTRACT

The glutamatergic N-methyl-D-aspartate receptor (NMDAR) is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2) mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP) in vivo. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistence in freely behaving mice. We applied differing high-frequency stimulation (HFS) patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT) mice, that endured for <1 h (early (E)-LTP), (LTP, 2-4 h) or >24 h (late (L)-LTP). In GluN2A-knockout (KO) mice, E-LTP (HFS, 50 pulses) was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 × 50 pulses) and L-LTP (HFS, 4 × 50 pulses) were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E-LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits GluN2B and leads to robust and persistent LTP. These unique signal-response properties of GluN2A and GluN2B enable qualitative differentiation of information encoding in hippocampal synapses.

4.
Front Behav Neurosci ; 6: 85, 2012.
Article in English | MEDLINE | ID: mdl-23248592

ABSTRACT

Long-term environmental enrichment (EE) elicits enduring effects on the adult brain, including altered synaptic plasticity. Synaptic plasticity may underlie memory formation and includes robust (>24 h) and weak (<2 h) forms of long-term potentiation (LTP) and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy have examined the consequences of very prolonged EE-exposure. It is unclear whether brief exposure to EE can alter synaptic plasticity. Clarifying this issue could help develop strategies to address cognitive deficits arising from neglect in children or adults. We assessed whether short-term EE elicits alterations in hippocampal synaptic plasticity and if social context may play a role. Adult mice were exposed to EE for 14 consecutive days. We found that robust late-LTP (>24 h) and short-term depression (<2 h) at Schaffer-collateral-CA1 synapses in freely behaving mice were unaltered, whereas early-LTP (E-LTP, <2 h) was significantly enhanced by EE. Effects were transient: E-LTP returned to control levels 1 week after cessation of EE. Six weeks later, animals were re-exposed to EE for 14 days. Under these conditions, E-LTP was facilitated into L-LTP (>24 h), suggesting that metaplasticity was induced during the first EE experience and that EE-mediated modifications are cumulative. Effects were absent in mice that underwent solitary enrichment or were group-housed without EE. These data suggest that EE in naïve animals strengthens E-LTP, and also promotes L-LTP in animals that underwent EE in the past. This indicates that brief exposure to EE, particularly under social conditions can elicit lasting positive effects on synaptic strength that may have beneficial consequences for cognition that depends on synaptic plasticity.

5.
Hippocampus ; 22(12): 2238-48, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22707377

ABSTRACT

Hippocampal synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) is likely to enable synaptic information storage in support of memory formation. The mouse brain has been subjected to intensive scrutiny in this regard; however, a multitude of studies has examined synaptic plasticity in the hippocampal slice preparation, whereas very few have addressed synaptic plasticity in the freely behaving mouse. Almost nothing is known about the frequency or N-methyl-D-aspartate receptor (NMDAR) dependency of hippocampal synaptic plasticity in the intact mouse brain. Therefore, in this study, we investigated the forms of synaptic plasticity that are elicited at different afferent stimulation frequencies. We also addressed the NMDAR dependency of this phenomenon. Adult male C57BL/6 mice were chronically implanted with a stimulating electrode into the Schaffer collaterals and a recording electrode into the Stratum radiatum of the CA1 region. To examine synaptic plasticity, we chose protocols that were previously shown to produce either LTP or LTD in the hippocampal slice preparation. Low-frequency stimulation (LFS) at 1 Hz (900 pulses) had no effect on evoked responses. LFS at 3 Hz (ranging from 200 up to 2 × 900 pulses) elicited short-term depression (STD, <45 min). LFS at 3 Hz (1,200 pulses) elicited slow-onset potentiation, high-frequency stimulation (HFS) at 100 Hz (100 or 200 pulses) or at 50 Hz was ineffective, whereas 100 Hz (50 pulses) elicited short-term potentiation (STP). HFS at 100 Hz given as 2 × 30, 2 × 50, or 4 × 50 pulses elicited LTP (>24 h). Theta-burst stimulation was ineffective. Antagonism of the NMDAR prevented STD, STP, and LTP. This study shows for the first time that protocols that effectively elicit persistent synaptic plasticity in the slice preparation elicit distinctly different effects in the intact mouse brain. Persistent LTD could not be elicited with any of the protocols tested. Plasticity responses are NMDAR dependent, suggesting that these phenomena are relevant for hippocampus-dependent learning.


Subject(s)
CA1 Region, Hippocampal/physiology , Neuronal Plasticity/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Electric Stimulation , Electrodes, Implanted , Evoked Potentials/physiology , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...