Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Expert Opin Biol Ther ; 23(11): 1137-1149, 2023.
Article in English | MEDLINE | ID: mdl-38078403

ABSTRACT

BACKGROUND: Solid tumors are becoming prevalent affecting both old and young populations. Numerous solid tumors are associated with high cMET expression. The complexity of solid tumors combined with the highly interconnected nature of the cMET/HGF pathway with other cellular pathways make the pursuit of finding an effective treatment extremely challenging. The current standard of care for these malignancies is mostly small molecule-based chemotherapy. Antibody-based therapeutics as well as antibody drug conjugates are promising emerging classes against cMET-overexpressing solid tumors. RESEARCH DESIGN AND METHODS: In this study, we described the design, synthesis, in vitro and in vivo characterization of cMET-targeting Fab drug conjugates (FDCs) as an alternative therapeutic strategy. The format is comprised of a Fab conjugated to a potent cytotoxic drug via a cleavable linker employing lysine-based and cysteine-based conjugation chemistries. RESULTS: We found that the FDCs have potent anti-tumor efficacies in cancer cells with elevated overexpression of cMET. Moreover, they demonstrated a remarkable anti-tumor effect in a human gastric xenograft mouse model. CONCLUSIONS: The FDC format has the potential to overcome some of the challenges presented by the other classes of therapeutics. This study highlights the promise of antibody fragment-based drug conjugate formats for the treatment of solid tumors.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Humans , Animals , Mice , Immunoconjugates/therapeutic use , Proto-Oncogene Proteins c-met/metabolism , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antibodies , Cell Line, Tumor
2.
Med ; 3(12): 860-882.e15, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36257298

ABSTRACT

BACKGROUND: The near impermeability of the blood-brain barrier (BBB) and the unique neuroimmune environment of the CNS prevents the effective use of antibodies in neurological diseases. Delivery of biotherapeutics to the brain can be enabled through receptor-mediated transcytosis via proteins such as the transferrin receptor, although limitations such as the ability to use Fc-mediated effector function to clear pathogenic targets can introduce safety liabilities. Hence, novel delivery approaches with alternative clearance mechanisms are warranted. METHODS: Binders that optimized transport across the BBB, known as transcytosis-enabling modules (TEMs), were identified using a combination of antibody discovery techniques and pharmacokinetic analyses. Functional activity of TEMs were subsequently evaluated by imaging for the ability of myeloid cells to phagocytose target proteins and cells. FINDINGS: We demonstrated significantly enhanced brain exposure of therapeutic antibodies using optimal transferrin receptor or CD98 TEMs. We found that these modules also mediated efficient clearance of tau aggregates and HER2+ tumor cells via a non-classical phagocytosis mechanism through direct engagement of myeloid cells. This mode of clearance potentially avoids the known drawbacks of FcγR-mediated antibody mechanisms in the brain such as the neurotoxic release of proinflammatory cytokines and immune cell exhaustion. CONCLUSIONS: Our study reports a new brain delivery platform that harnesses receptor-mediated transcytosis to maximize brain uptake and uses a non-classical phagocytosis mechanism to efficiently clear pathologic proteins and cells. We believe these findings will transform therapeutic approaches to treat CNS diseases. FUNDING: This research was funded by Janssen, Pharmaceutical Companies of Johnson & Johnson.


Subject(s)
Blood-Brain Barrier , Transcytosis , Blood-Brain Barrier/metabolism , Transcytosis/physiology , Receptors, Transferrin , Biological Transport/physiology , Antibodies
3.
Dev Cell ; 50(5): 573-585.e5, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31231041

ABSTRACT

Vesicle budding for Golgi-to-plasma membrane trafficking is a key step in secretion. Proteins that induce curvature of the Golgi membrane are predicted to be required, by analogy to vesicle budding from other membranes. Here, we demonstrate that GOLPH3, upon binding to the phosphoinositide PI4P, induces curvature of synthetic membranes in vitro and the Golgi in cells. Moreover, efficient Golgi-to-plasma membrane trafficking critically depends on the ability of GOLPH3 to curve the Golgi membrane. Interestingly, uncoupling of GOLPH3 from its binding partner MYO18A results in extensive curvature of Golgi membranes, producing dramatic tubulation of the Golgi, but does not support forward trafficking. Thus, forward trafficking from the Golgi to the plasma membrane requires the ability of GOLPH3 both to induce Golgi membrane curvature and to recruit MYO18A. These data provide fundamental insight into the mechanism of Golgi trafficking and into the function of the unique Golgi secretory oncoproteins GOLPH3 and MYO18A.


Subject(s)
Golgi Apparatus/metabolism , Liposomes/metabolism , Membrane Proteins/metabolism , Phosphatidylinositols/metabolism , Secretory Pathway , HEK293 Cells , HeLa Cells , Humans , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Liposomes/chemistry , Membrane Proteins/chemistry , Myosins/metabolism , Phosphatidylinositols/chemistry , Protein Binding , Protein Domains
4.
Adv Biol Regul ; 67: 84-92, 2018 01.
Article in English | MEDLINE | ID: mdl-28942352

ABSTRACT

MYO18A is a divergent member of the myosin family characterized by the presence of an amino-terminal PDZ domain. MYO18A has been found in a few different complexes involved in intracellular transport processes. MYO18A is found in a complex with LURAP1 and MRCK that functions in retrograde treadmilling of actin. It also has been found in a complex with PAK2, ßPIX, and GIT1, functioning to transport that protein complex from focal adhesions to the leading edge. Finally, a high proportion of MYO18A is found in complex with GOLPH3 at the trans Golgi, where it functions to promote vesicle budding for Golgi-to-plasma membrane trafficking. Interestingly, MYO18A has been implicated as a cancer driver, as have other components of the GOLPH3 pathway. It remains uncertain as to whether or not MYO18A has intrinsic motor activity. While many questions remain, MYO18A is a fascinatingly unique myosin that is essential in higher organisms.


Subject(s)
Cell Membrane/metabolism , Golgi Apparatus/metabolism , Myosins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biological Transport, Active , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Membrane/genetics , Golgi Apparatus/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Myosins/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
5.
Mol Biol Cell ; 28(25): 3709-3723, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29021338

ABSTRACT

Cellular proliferation is antagonistically regulated by canonical and noncanonical Wnt signals; their dysbalance triggers cancers. We previously showed that a multimodular signal transducer, Daple, enhances PI3-K→Akt signals within the noncanonical Wnt signaling pathway and antagonistically inhibits canonical Wnt responses. Here we demonstrate that the PI3-K→Akt pathway serves as a positive feedback loop that further enhances noncanonical Wnt signals by compartmentalizing ß-catenin. By phosphorylating the phosphoinositide- (PI) binding domain of Daple, Akt abolishes Daple's ability to bind PI3-P-enriched endosomes that engage dynein motor complex for long-distance trafficking of ß-catenin/E-cadherin complexes to pericentriolar recycling endosomes (PCREs). Phosphorylation compartmentalizes Daple/ß-catenin/E-cadherin complexes to cell-cell contact sites, enhances noncanonical Wnt signals, and thereby suppresses colony growth. Dephosphorylation compartmentalizes ß-catenin on PCREs, a specialized compartment for prolonged unopposed canonical Wnt signaling, and enhances colony growth. Cancer-associated Daple mutants that are insensitive to Akt mimic a constitutively dephosphorylated state. This work not only identifies Daple as a platform for cross-talk between Akt and the noncanonical Wnt pathway but also reveals the impact of such cross-talk on tumor cell phenotypes that are critical for cancer initiation and progression.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling Pathway/physiology , Cadherins/metabolism , Cell Proliferation/physiology , Centrosome , Feedback, Physiological , Frizzled Receptors/metabolism , HeLa Cells , Humans , Phosphorylation , Signal Transduction , Trans-Activators/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
6.
Oncotarget ; 7(48): 78473-78486, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27802184

ABSTRACT

Metastatic cancer cells are characterized by their ability to degrade and invade through extracellular matrix. We previously showed that the Tks adaptor proteins, Tks4 and Tks5, are required for invadopodia formation and/or function in Src-transformed fibroblasts and a number of human cancer cell types. In this study, we investigated the role of Tks adaptor proteins in melanoma cell invasion and metastasis. Knockdown of either Tks4 or Tks5 in both mouse and human melanoma cell lines resulted in a decreased ability to form invadopodia and degrade extracellular matrix. In addition, Tks-knockdown melanoma cells had decreased proliferation in a 3-dimensional type l collagen matrix, but not in 2-dimensional culture conditions. We also investigated the role of Tks proteins in melanoma progression in vivo using xenografts and experimental metastasis assays. Consistent with our in vitro results, reduction of Tks proteins markedly reduced subcutaneous melanoma growth as well as metastatic growth in the lung. We explored the clinical relevance of Tks protein expression in human melanoma specimens using a tissue microarray. Compared to non-malignant nevi, both Tks proteins were highly expressed in melanoma tissues. Moreover, metastatic melanoma cases showed higher expression of Tks5 than primary melanoma cases. Taken together, these findings suggest the importance of Tks adaptor proteins in melanoma growth and metastasis in vivo, likely via functional invadopodia formation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Cell Movement , Cell Proliferation , Lung Neoplasms/metabolism , Melanoma/metabolism , Phosphoproteins/metabolism , Podosomes/metabolism , Skin Neoplasms/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Melanoma/genetics , Melanoma/secondary , Mice , Mice, Nude , Neoplasm Invasiveness , Phosphate-Binding Proteins , Phosphoproteins/genetics , Podosomes/pathology , RNA Interference , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Time Factors , Transfection , Tumor Burden
7.
Front Neurosci ; 9: 362, 2015.
Article in English | MEDLINE | ID: mdl-26500484

ABSTRACT

The Golgi protein GOLPH3 binds to PtdIns(4)P and MYO18A, linking the Golgi to the actin cytoskeleton. The GOLPH3 pathway is essential for vesicular trafficking from the Golgi to the plasma membrane. A side effect of GOLPH3-dependent trafficking is to generate the extended ribbon shape of the Golgi. Perturbation of the pathway results in changes to both Golgi morphology and secretion, with functional consequences for the cell. The cellular response to DNA damage provides an example of GOLPH3-mediated regulation of the Golgi. Upon DNA damage, DNA-PK phosphorylation of GOLPH3 increases binding to MYO18A, activating the GOLPH3 pathway, which consequently results in Golgi fragmentation, reduced trafficking, and enhanced cell survival. The PtdIns(4)P/GOLPH3/MYO18A/F-actin pathway provides new insight into the relationship between Golgi morphology and function, and their regulation.

8.
Nat Genet ; 47(5): 528-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25848753

ABSTRACT

Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in the sorting nexin gene SNX14, encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate, a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma, accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.


Subject(s)
Cerebellar Diseases/genetics , Cerebellum/pathology , Lysosomes/metabolism , Phagosomes/metabolism , Sorting Nexins/genetics , Spinocerebellar Ataxias/genetics , Animals , Atrophy/genetics , Autophagy , Child, Preschool , Female , Gene Frequency , Humans , Infant , Lod Score , Lysosomal Storage Diseases/genetics , Male , Mutation , Syndrome , Zebrafish
9.
Cancer Res ; 75(4): 624-7, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25634214

ABSTRACT

GOLPH3 is the first example of an oncogene that functions in secretory trafficking at the Golgi. The discovery of GOLPH3's roles in both cancer and Golgi trafficking raises questions about how GOLPH3 and the Golgi contribute to cancer. Our recent investigation of the regulation of GOLPH3 revealed a surprising response by the Golgi upon DNA damage that is mediated by DNA-PK and GOLPH3. These results provide new insight into the DNA damage response with important implications for understanding the cellular response to standard cancer therapeutic agents.


Subject(s)
DNA Damage/genetics , DNA-Activated Protein Kinase/genetics , Membrane Proteins/genetics , Neoplasms/genetics , Cell Movement/genetics , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Neoplasms/pathology , Protein Transport/genetics , Signal Transduction/genetics
10.
J Autoimmun ; 53: 33-45, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24583068

ABSTRACT

We generated a mouse model with a 162 nt AU-rich element (ARE) region deletion in the 3' untranslated region (3'UTR) of the interferon-gamma (IFN-γ) gene that results in chronic circulating serum IFN-γ levels. Mice homozygous for the ARE deletion (ARE-Del) (-/-) present both serologic and cellular abnormalities typical of patients with systemic lupus erythematosus (SLE). ARE-Del(-/-) mice display increased numbers of pDCs in bone marrow and spleen. Addition of IFN-γ to Flt3-ligand (Flt3L) treated in vitro bone marrow cultures results in a 2-fold increase in pDCs with concurrent increases in IRF8 expression. Marginal zone B (MZB) cells and marginal zone macrophages (MZMs) are absent in ARE-Del(-/-) mice. ARE-Del(+/-) mice retain both MZB cells and MZMs and develop no or mild autoimmunity. However, low dose clodronate treatment in ARE-Del(+/-) mice specifically eliminates MZMs and promotes anti-DNA antibody development and glomerulonephritis. Our findings demonstrate the consequences of a chronic IFN-γ milieu on B220(+) cell types and in particular the impact of MZB cell loss on MZM function in autoimmunity. Furthermore, similarities between disease states in ARE-Del(-/-) mice and SLE patients suggest that IFN-γ may not only be a product of SLE but may be critical for disease onset and progression.


Subject(s)
AU Rich Elements/genetics , Base Sequence , Interferon-gamma , Lupus Nephritis/immunology , Sequence Deletion , Animals , Antibodies, Antinuclear/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Lupus Nephritis/genetics , Macrophages/immunology , Macrophages/pathology , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Knockout
11.
Cell ; 156(3): 413-27, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24485452

ABSTRACT

The response to DNA damage, which regulates nuclear processes such as DNA repair, transcription, and cell cycle, has been studied thoroughly. However, the cytoplasmic response to DNA damage is poorly understood. Here, we demonstrate that DNA damage triggers dramatic reorganization of the Golgi, resulting in its dispersal throughout the cytoplasm. We further show that DNA-damage-induced Golgi dispersal requires GOLPH3/MYO18A/F-actin and the DNA damage protein kinase, DNA-PK. In response to DNA damage, DNA-PK phosphorylates GOLPH3, resulting in increased interaction with MYO18A, which applies a tensile force to the Golgi. Interference with the Golgi DNA damage response by depletion of DNA-PK, GOLPH3, or MYO18A reduces survival after DNA damage, whereas overexpression of GOLPH3, as is observed frequently in human cancers, confers resistance to killing by DNA-damaging agents. Identification of the DNA-damage-induced Golgi response reveals an unexpected pathway through DNA-PK, GOLPH3, and MYO18A that regulates cell survival following DNA damage.


Subject(s)
DNA Damage , DNA-Activated Protein Kinase/metabolism , Golgi Apparatus/metabolism , Membrane Proteins/metabolism , Myosins/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Survival , Cells, Cultured , Humans , Membrane Proteins/chemistry , Mice , Molecular Sequence Data , Phosphorylation , Rats , Sequence Alignment
12.
Mol Biol Cell ; 24(6): 796-808, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23345592

ABSTRACT

GOLPH3 is a phosphatidylinositol-4-phosphate (PI4P) effector that plays an important role in maintaining Golgi architecture and anterograde trafficking. GOLPH3 does so through its ability to link trans-Golgi membranes to F-actin via its interaction with myosin 18A (MYO18A). GOLPH3 also is known to be an oncogene commonly amplified in human cancers. GOLPH3L is a GOLPH3 paralogue found in all vertebrate genomes, although previously it was largely uncharacterized. Here we demonstrate that although GOLPH3 is ubiquitously expressed in mammalian cells, GOLPH3L is present in only a subset of tissues and cell types, particularly secretory tissues. We show that, like GOLPH3, GOLPH3L binds to PI4P, localizes to the Golgi as a consequence of its PI4P binding, and is required for efficient anterograde trafficking. Surprisingly, however, we find that perturbations of GOLPH3L expression produce effects on Golgi morphology that are opposite to those of GOLPH3 and MYO18A. GOLPH3L differs critically from GOLPH3 in that it is largely unable to bind to MYO18A. Our data demonstrate that despite their similarities, unexpectedly, GOLPH3L antagonizes GOLPH3/MYO18A at the Golgi.


Subject(s)
Golgi Apparatus/ultrastructure , Membrane Proteins/metabolism , Myosins/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphoproteins/metabolism , 3T3 Cells , Amino Acid Sequence , Animals , Cell Line , Glycosyltransferases/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Membrane Proteins/genetics , Mice , Myosins/genetics , Protein Transport , RNA Interference , RNA, Small Interfering , Sequence Alignment , Signal Transduction
13.
Cancer Res ; 69(9): 3986-94, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19366803

ABSTRACT

Large granular lymphocyte (LGL) leukemia is a clonal proliferative disease of T and natural killer (NK) cells. Interleukin (IL)-15 is important for the development and progression of LGL leukemia and is a survival factor for normal NK and T memory cells. IL-15 alters expression of Bcl-2 family members, Bcl-2, Bcl-XL, Bim, Noxa, and Mcl-1; however, effects on Bid have not been shown. Using an adoptive transfer model, we show that NK cells from Bid-deficient mice survive longer than cells from wild-type control mice when transferred into IL-15-null mice. In normal human NK cells, IL-15 significantly reduces Bid accumulation. Decreases in Bid are not due to alterations in RNA accumulation but result from increased proteasomal degradation. IL-15 up-regulates the E3 ligase HDM2 and we find that HDM2 directly interacts with Bid. HDM2 suppression by short hairpin RNA increases Bid accumulation lending further support for HDM2 involvement in Bid degradation. In primary leukemic LGLs, Bid levels are low but are reversed with bortezomib treatment with subsequent increases in LGL apoptosis. Overall, these data provide a novel molecular mechanism for IL-15 control of Bid that potentially links this cytokine to leukemogenesis through targeted proteasome degradation of Bid and offers the possibility that proteasome inhibitors may aid in the treatment of LGL leukemia.


Subject(s)
BH3 Interacting Domain Death Agonist Protein/immunology , Interleukin-15/immunology , Leukemia, Large Granular Lymphocytic/immunology , Lymphocytes/immunology , Proteasome Endopeptidase Complex/metabolism , Animals , BH3 Interacting Domain Death Agonist Protein/biosynthesis , BH3 Interacting Domain Death Agonist Protein/deficiency , BH3 Interacting Domain Death Agonist Protein/metabolism , Humans , Interleukin-15/deficiency , Interleukin-15/metabolism , Interleukin-15/pharmacology , Interleukin-2/immunology , Interleukin-2/metabolism , Killer Cells, Natural/immunology , Leukemia, Large Granular Lymphocytic/enzymology , Leukemia, Large Granular Lymphocytic/metabolism , Lymphocytes/enzymology , Lymphocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proteasome Inhibitors , Proto-Oncogene Proteins c-mdm2/immunology , Proto-Oncogene Proteins c-mdm2/metabolism
14.
Mol Biol Cell ; 20(5): 1302-11, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19144821

ABSTRACT

Metastatic cancer cells have the ability to both degrade and migrate through the extracellular matrix (ECM). Invasiveness can be correlated with the presence of dynamic actin-rich membrane structures called podosomes or invadopodia. We showed previously that the adaptor protein tyrosine kinase substrate with five Src homology 3 domains (Tks5)/Fish is required for podosome/invadopodia formation, degradation of ECM, and cancer cell invasion in vivo and in vitro. Here, we describe Tks4, a novel protein that is closely related to Tks5. This protein contains an amino-terminal Phox homology domain, four SH3 domains, and several proline-rich motifs. In Src-transformed fibroblasts, Tks4 is tyrosine phosphorylated and predominantly localized to rosettes of podosomes. We used both short hairpin RNA knockdown and mouse embryo fibroblasts lacking Tks4 to investigate its role in podosome formation. We found that lack of Tks4 resulted in incomplete podosome formation and inhibited ECM degradation. Both phenotypes were rescued by reintroduction of Tks4, whereas only podosome formation, but not ECM degradation, was rescued by overexpression of Tks5. The tyrosine phosphorylation sites of Tks4 were required for efficient rescue. Furthermore, in the absence of Tks4, membrane type-1 matrix metalloproteinase (MT1-MMP) was not recruited to the incomplete podosomes. These findings suggest that Tks4 and Tks5 have overlapping, but not identical, functions, and implicate Tks4 in MT1-MMP recruitment and ECM degradation.


Subject(s)
Cell Membrane Structures/metabolism , Cell Movement/physiology , Phosphoproteins/physiology , Adaptor Proteins, Signal Transducing , Animals , Cell Line , Cell Membrane Structures/physiology , Cell Membrane Structures/ultrastructure , Cloning, Molecular , Humans , Lipid Metabolism , Mice , Phosphate-Binding Proteins , Phosphoproteins/analysis , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphorylation , Protein Structure, Tertiary
15.
J Interferon Cytokine Res ; 26(10): 706-18, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17032165

ABSTRACT

The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-gamma (IFN-gamma) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors.


Subject(s)
Apoptosis , Inhibitor of Apoptosis Proteins/biosynthesis , Interleukin-18/pharmacology , Killer Cells, Natural/immunology , Signal Transduction , Cells, Cultured , Humans , Inflammation Mediators/pharmacology , Inhibitor of Apoptosis Proteins/genetics , Killer Cells, Natural/drug effects , NF-kappa B/metabolism , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction/drug effects , TNF Receptor-Associated Factor 1/biosynthesis , TNF Receptor-Associated Factor 1/genetics , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...