Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Total Environ ; 724: 138218, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32247128

ABSTRACT

Anticoagulant rodenticides (ARs) are regularly used around the world to control pest mammals. Second-generation anticoagulant rodenticides (SGARs) are highly persistent in biological tissue and have a high potential for bioaccumulation and biomagnification. Consequently, exposure and poisoning of non-target organisms has been frequently documented, especially in countries with unregulated AR sales and usage. Most of this research has focussed on rodent-predators, usually raptors and predatory mammals, although exposure has also been documented in invertebrates and insectivorous fauna. Few studies have explored non-target exposure in reptiles, despite species sharing similar trophic positions and dietary preferences to other exposed fauna. We tested three abundant urban reptile species in Perth, Western Australia that differ in diet and trophic tiers for multiple AR exposure, the dugite Pseudonaja affinis (rodent-predator), the bobtail Tiliqua rugosa (omnivore) and the tiger snake Notechis scutatus occidentalis (frog-predator). We found frequent exposure in all three species (91% in dugites, 60% in bobtails and 45% in tiger snakes). Mean combined liver concentrations of ARs of exposed individuals were 0.178 mg/kg in dugites, 0.040 mg/kg in bobtails and 0.009 mg/kg in tiger snakes. High exposure frequency and liver concentration was expected for the dugite. Exposure in the other species is more surprising and implies widespread AR contamination of the food web. We discuss the likelihood of global AR exposure of urban reptiles, highlight the potential for reptiles to be important vectors of ARs in the food web and highlight implications for humans consuming wild reptiles.


Subject(s)
Rodenticides , Animals , Anticoagulants , Environmental Monitoring , Reptiles , Western Australia
3.
Food Chem ; 146: 345-52, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24176353

ABSTRACT

A highly selective and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous identification and quantification of beta-casomorphin 5 (BCM5) and beta-casomorphin 7 (BCM7) in yoghurt. The method used deuterium labelled BCM5-d10 and BCM7-d10 as surrogate standards for confident identification and accurate and quantification of these analytes in yoghurt. Linear responses for BCM5 and BCM7 (R(2)=0.9985 and 0.9986, respectively) was observed in the range 0.01-10ng/µL. The method limits of detection (MLDs) in yoghurt extracts were found to be 0.5 and 0.25ng/g for BCM5 and BCM7, respectively. Analyses of spiked samples were used to provide confirmation of accuracy and precision of the analytical method. Recoveries relative to the surrogate standards of these spikes were in the range of 95-106% for BCM5 and 103-109% for BCM7. Precision from analysis of spiked samples was expressed as relative standard deviation (%RSD) and values were in the range 1-16% for BCM5 and 1-6% for BCM7. Inter-day reproducibility was between 2.0-6.4% for BCM5 and between 3.2-6.1% for BCM7. The validated isotope dilution LC-MS/MS method was used to measure BCM5 and BCM7 in ten commercial and laboratory prepared samples of yoghurt and milk. Neither BCM5 nor BCM7 was detected in commercial yoghurts. However, they were observed in milk and laboratory prepared yoghurts and interestingly their levels decreased during processing. BCM5 decreased from 1.3ng/g in milk to 1.1ng/g in yoghurt made from that milk at 0day storage and

Subject(s)
Chromatography, Liquid/methods , Endorphins/analysis , Food Contamination/analysis , Milk/chemistry , Peptide Fragments/analysis , Tandem Mass Spectrometry/methods , Yogurt/analysis , Animals , Cattle
4.
J Contam Hydrol ; 122(1-4): 53-62, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21186066

ABSTRACT

The fate of nine trace organic compounds was evaluated during a 12month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17ß-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life <1day). Lag-times for the start of degradation of these compounds ranged from <15 to 30days. While iodipamide was persistent under aerobic conditions, artificial reductive geochemical conditions promoted via the addition of ethanol, resulted in rapid degradation (half life <1days). Pharmaceuticals (carbamazepine and oxazepam) and disinfection by-products (NDMA and NMOR) did not degrade under either aerobic or anaerobic aquifer geochemical conditions (half life >50days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required.


Subject(s)
Organic Chemicals/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Supply/analysis , Geologic Sediments/chemistry
5.
Water Res ; 44(5): 1471-81, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19939429

ABSTRACT

Water quality changes associated with the passage of aerobic reverse osmosis (RO) treated recycled water through a deep anaerobic pyritic aquifer system was evaluated in sediment-filled laboratory columns as part of a managed aquifer recharge (MAR) strategy. The fate of nine recycled water trace organic compounds along with potential negative water quality changes such as the release of metal(loid)s were investigated in large-scale columns over a period of 12 months. The anaerobic geochemical conditions provided a suitable environment for denitrification, and rapid (half-life <1-25 days) degradation of the endocrine disrupting compounds (bisphenol A, 17beta-estradiol, 17alpha-ethynylestradiol), and iodipamide. However, pharmaceuticals (carbamazepine and oxazepam), disinfection by-products (N-nitrosodimethylamine, N-nitrosomorpholine) and iohexol did not degrade rapidly (half-life > 100 days). High retardation coefficients (R) determined for many of the trace organics (R 13 to 67) would increase aquifer residence time and be beneficial for many of the slow degrading compounds. However, for the trace organics with low R values (1.1-2.6) and slow degradation rates (half-life > 100 days), such as N-nitrosodimethylamine, N-nitrosomorpholine and iohexol, substantial biodegradation during aquifer passage may not occur and additional investigations are required. Only minor transient increases in some metal(loid) concentrations were observed, as a result of either pyrite oxidation, mineral dissolution or pH induced metal desorption, followed by metal re-sorption downgradient in the oxygen depleted zone.


Subject(s)
Conservation of Natural Resources , Metals/isolation & purification , Organic Chemicals/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Supply/analysis , Adsorption , Anaerobiosis , Anions/analysis , Bromides/isolation & purification , Cations/analysis , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Manganese/isolation & purification , Nitrates/analysis , Oxygen/isolation & purification
6.
Water Res ; 42(3): 743-53, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17720212

ABSTRACT

To help understand and predict the role of natural organic matter (NOM) in the fouling of low-pressure membranes, experiments were carried out with an apparatus that incorporates automatic backwashing and long filtration runs. Three hollow fibre membranes of varying character were included in the study, and the filtration of two different surface waters was compared. The hydrophilic membrane had greater flux recovery after backwashing than the hydrophobic membranes, but the efficiency of backwashing decreased at extended filtration times. NOM concentration of these waters (7.9 and 9.1mg/L) had little effect on the flux of the membranes at extended filtration times, as backwashing of the membrane restored the flux to similar values regardless of the NOM concentration. The solution pH also had little effect at extended filtration times. The backwashing efficiency of the hydrophilic membrane was dramatically different for the two waters, and the presence of colloid NOM alone could not explain these differences. It is proposed that colloidal NOM forms a filter cake on the surface of the membranes and that small molecular weight organics that have an adsorption peak at 220nm but not 254nm were responsible for "gluing" the colloids to the membrane surface. Alum coagulation improved membrane performance in all instances, and this was suggested to be because coagulation reduced the concentration of "glue" that holds the organic colloids to the membrane surface.


Subject(s)
Polypropylenes , Polyvinyls , Water Pollutants/analysis , Water Purification/instrumentation , Alum Compounds/chemistry , Equipment Failure Analysis , Hydrogen-Ion Concentration , Ultrafiltration/instrumentation , Water Pollutants/chemistry
7.
J Chromatogr A ; 1102(1-2): 104-15, 2006 Jan 13.
Article in English | MEDLINE | ID: mdl-16256127

ABSTRACT

A robust procedure for the determination of 16 US EPA PAHs in both aqueous (e.g. wastewaters, industrial discharges, treated effluents) and solid samples (e.g. suspended solids and sludge) from a wastewater treatment plant (WWTP) is presented. Recovery experiments using different percentages of organic modifier, sorbents and eluting solvent mixtures were carried out in Milli-Q water (1000 mL) spiked with a mixture of the PAH analytes (100 ng/L of each analyte). The solid phase extraction (SPE) procedures applied to spiked waste water samples (1000 mL; 100 ng/L spiking level) permitted simultaneous recovery of all the 16PAHs with yields >70% (6-13% RSD). SPE clean up procedures applied to sewage and stabilized sludge extracts, showed percent recoveries in the range 73-92% (7-13% RSD) and 71-89% (7-12% RSD), respectively. The methods were used for the determination of PAHs in aqueous and solid samples from the WWTP of Fusina (Venice, Italy). Mean concentrations, as the sum of the 16PAHs in aqueous and suspended solid samples, were found to be approx. in the 1.12-4.62 microg/L range. Sewage and stabilized sludge samples contained mean PAH concentrations, as sum of 16 compounds, in the concentration range of 1.44-1.26 mg/kg, respectively. Extraction and clean up procedures for sludge samples were validated using EPA certified reference material IRM-104 (CRM No. 912). Instrumental analyses were performed by coupling HPLC with UV-diode array detection (UV-DAD) and fluorescence detection (FLD).


Subject(s)
Industrial Waste/analysis , Polycyclic Compounds/analysis , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Italy , Reference Standards , Reproducibility of Results , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...