Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0303608, 2024.
Article in English | MEDLINE | ID: mdl-38809854

ABSTRACT

INTRO/BACKGROUND: Octopuses are capable of complex arm movements. Unfortunately, experimental barriers and lack of a robust analysis method made it difficult to quantify the three-dimensional (3D) kinematics of soft, flexible bodies, such as the octopus arm. This information is not only crucial for understanding the posture of the animal's arm but also for the development of similarly designed soft, flexible devices. OBJ/GOAL: The primary goal of this work was to create a method to comprehensively quantify complex, 3D postures of octopus (Octopus Bimaculoides) arms in a manner that is conducive and translatable to octopus arm-inspired devices for health monitoring and rehabilitation. METHODS: In this study, 3D underwater motion capture was used to collect kinematic data on both live octopuses and disembodied arms that still had neural activity. A new method was developed to define how arm curvature and regional segments were oriented relative to each other in 3D. This included identification of the bend within a segment along with the computation of the relative orientation between segments, thus permitting the complete quantification of complex arm motions. RESULTS: By comparing vector-based and radius of curvature-based approaches to magnitude of curvature, it was clear that the vector-based approach was less dependent on the length of a segment and that its reported ranges of motion were translatable for outcome measures associated with clinical use. The new approach for the relative orientation of each segment of the octopus arm resulted in the capability of describing the octopus arm in many unique postures, such as straight, simple bending, and complex bending as it utilized the three rotational angles. OUTCOME/IMPACT: This method and its application to octopus arms will yield new information that can be used to better communicate and track not only octopus arm movements but in the development of complex, segmented, soft-bodied devices that can be used in health monitoring and rehabilitation.


Subject(s)
Octopodiformes , Posture , Octopodiformes/physiology , Animals , Biomechanical Phenomena , Posture/physiology , Movement/physiology , Arm/physiology
2.
Elife ; 112022 09 23.
Article in English | MEDLINE | ID: mdl-36149059

ABSTRACT

Resilience, the ability to overcome stressful conditions, is found in most mammals and varies significantly among individuals. A lack of resilience can lead to the development of neuropsychiatric and sleep disorders, often within the same individual. Despite extensive research into the brain mechanisms causing maladaptive behavioral-responses to stress, it is not clear why some individuals exhibit resilience. To examine if sleep has a determinative role in maladaptive behavioral-response to social stress, we investigated individual variations in resilience using a social-defeat model for male mice. Our results reveal a direct, causal relationship between sleep amount and resilience-demonstrating that sleep increases after social-defeat stress only occur in resilient mice. Further, we found that within the prefrontal cortex, a regulator of maladaptive responses to stress, pre-existing differences in sleep regulation predict resilience. Overall, these results demonstrate that increased NREM sleep, mediated cortically, is an active response to social-defeat stress that plays a determinative role in promoting resilience. They also show that differences in resilience are strongly correlated with inter-individual variability in sleep regulation.


To many of us, it may seem obvious that sleep is restorative: we feel better after a good night's rest. However, exactly how sleep benefits the brain and body remains poorly understood. One clue may lie in neuropsychiatric disorders: these conditions ­ such as depression and anxiety ­ are often accompanied by disrupted sleep. Additionally, these neuropsychiatric disorders are frequently caused or worsened by stress, which can also interfere with sleep. This close association between stress and sleep has led some to hypothesize that sleep serves to overcome the adverse effects of stress on the brain, but this hypothesis remains largely untested. One type of stress that is common to all mammals is social stress, defined as stress caused by social interactions. This means that mice and other rodents can be subjected to social stress in the laboratory to test hypotheses about the effects of stress on the brain. Importantly, in both animals and humans, there are individual differences in resilience, or the ability to overcome the adverse effects of stress. Based on this information, Bush et al. set out to establish whether sleep can regulate resilience to social stress in mice. When the mice were gently kept awake during their normal sleep time, resilience decreased and so the mice were less able to overcome the negative effects of stress. Conversely, increasing sleep, by activating an area of the brain responsible for initiating sleep, increased the mice's resilience to social stress. Thus, Bush et al. showed that changes in sleep do lead to changes in resilience. To find out whether resilience can be predicted by changes in sleeping patterns, Bush et al. studied how both resilient mice and those susceptible to stress slept before and after social stress. Resilient mice would often sleep more after social stress; meanwhile, few changes were observed in susceptible mice. Surprisingly, sleep quality also predicted resilience, with resilient mice sleeping better than susceptible mice even before exposure to social stress. To determine whether the differences in sleep that predict resilience can be detected as brain activity, Bush et al. placed electrodes in two regions of the prefrontal cortex ­ a part of the brain important for decision-making and social behaviors ­ to measure how mice recovered lost sleep. This experiment revealed that the changes in sleep that predict resilience are prominent in the prefrontal cortex. Overall, Bush et al. reveal that sleeping more and sleeping better promote resilience to social stress. Furthermore, the results suggests that lack of sleep may lead to increased risk of stress-related psychiatric conditions. Humans are one of the few species that choose to deprive themselves of sleep: Bush, et al. provide evidence that this choice may have significant consequences on mental health. Furthermore, this work creates a new model that lays the groundwork for future studies investigating how sleep can overcome stress on the brain.


Subject(s)
Eye Movements , Stress, Psychological , Animals , Mice , Male , Mice, Inbred C57BL , Stress, Psychological/psychology , Prefrontal Cortex , Sleep , Mammals
4.
PLoS One ; 12(11): e0187071, 2017.
Article in English | MEDLINE | ID: mdl-29125838

ABSTRACT

Nitrergic neurons of the dorsal raphe nucleus (DRN) may play a role in physiological stress responses. The caudal lateral wings (CLW) are unique compared to other rostral-caudal DRN sub-regions because they contain distinct nitric oxide (NO) synthase (NOS) populations that are independent of tryptophan hydroxylase (TPH). NOS neurons in the CLW are also highly activated during acute restraint stress. However, the effects of acute stress duration on NOS activation in the CLW are unclear. Here NADPH-d, an index of NOS activity, is used to show that sub-regions of the DRN have differential NOS activation in response to 6 hours of restraint stress in rats. We report increased NOS activity through 6 hours of restraint in the caudal lateral wings and ventromedial sub-regions. These data suggest that, NOS neurons may play a dynamic role in the response to stress duration.


Subject(s)
Dorsal Raphe Nucleus/metabolism , Nitrergic Neurons/metabolism , Stress, Physiological , Animals , Enzyme Activation , Immobilization , Nitric Oxide Synthase/metabolism , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...