Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 93(9): 098301, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15447149

ABSTRACT

Flow-induced anisotropic thermal conduction in a polymer liquid is studied using force Rayleigh scattering. Time-dependent measurements of the complete thermal diffusivity tensor, which includes one off-diagonal and three diagonal components, are reported on an entangled polymer melt subjected to a uniform shear deformation. These data, in conjunction with mechanical measurements of the stress, provide the first direct evidence that the thermal conductivity tensor and the stress tensor are linearly related in a deformed polymer liquid.


Subject(s)
Biophysics/methods , Polymers/chemistry , Thermal Conductivity , Anisotropy , Diffusion , Kinetics , Models, Statistical , Temperature , Time Factors
2.
Proc Natl Acad Sci U S A ; 101(36): 13142-6, 2004 Sep 07.
Article in English | MEDLINE | ID: mdl-15340152

ABSTRACT

Almost no experimental data exist to test theories for the nonisothermal flow of complex fluids. To provide quantitative tests for newly proposed theories, we have developed a holographic grating technique to study energy transport in an amorphous polymer melt subject to flow. Polyisobutylene with weight-averaged molecular mass of 85 kDa is sheared at a rate of 10 s(-1), and all nonzero components of the thermal conductivity tensor are measured as a function of time, after cessation. Our results are consistent with proposed generalizations to the energy balance for microstructural fluids, including a generalized Fourier's law for anisotropic media. The data are also consistent with a proposed stress-thermal rule for amorphous polymer melts. Confirmation of the universality of these results would allow numerical modelers to make quantitative predictions for the nonisothermal flow of polymer melts.

SELECTION OF CITATIONS
SEARCH DETAIL
...