Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5503, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951531

ABSTRACT

Proline is widely known as the only proteogenic amino acid with a secondary amine. In addition to its crucial role in protein structure, the secondary amino acid modulates neurotransmission and regulates the kinetics of signaling proteins. To understand the structural basis of proline import, we solved the structure of the proline transporter SIT1 in complex with the COVID-19 viral receptor ACE2 by cryo-electron microscopy. The structure of pipecolate-bound SIT1 reveals the specific sequence requirements for proline transport in the SLC6 family and how this protein excludes amino acids with extended side chains. By comparing apo and substrate-bound SIT1 states, we also identify the structural changes that link substrate release and opening of the cytoplasmic gate and provide an explanation for how a missense mutation in the transporter causes iminoglycinuria.


Subject(s)
Angiotensin-Converting Enzyme 2 , Cryoelectron Microscopy , Proline , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Proline/metabolism , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/chemistry , Models, Molecular
2.
Nat Commun ; 15(1): 4173, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755204

ABSTRACT

Potassium channels of the Two-Pore Domain (K2P) subfamily, KCNK1-KCNK18, play crucial roles in controlling the electrical activity of many different cell types and represent attractive therapeutic targets. However, the identification of highly selective small molecule drugs against these channels has been challenging due to the high degree of structural and functional conservation that exists not only between K2P channels, but across the whole K+ channel superfamily. To address the issue of selectivity, here we generate camelid antibody fragments (nanobodies) against the TREK-2 (KCNK10) K2P K+ channel and identify selective binders including several that directly modulate channel activity. X-ray crystallography and CryoEM data of these nanobodies in complex with TREK-2 also reveal insights into their mechanisms of activation and inhibition via binding to the extracellular loops and Cap domain, as well as their suitability for immunodetection. These structures facilitate design of a biparatropic inhibitory nanobody with markedly improved sensitivity. Together, these results provide important insights into TREK channel gating and provide an alternative, more selective approach to modulation of K2P channel activity via their extracellular domains.


Subject(s)
Potassium Channels, Tandem Pore Domain , Single-Domain Antibodies , Potassium Channels, Tandem Pore Domain/metabolism , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Humans , Crystallography, X-Ray , Animals , Cryoelectron Microscopy , HEK293 Cells , Models, Molecular
3.
ACS Med Chem Lett ; 12(8): 1288-1294, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34413958

ABSTRACT

Determination of target engagement for candidate drug molecules in the native cellular environment is a significant challenge for drug discovery programs. The cellular thermal shift assay (CETSA) has emerged as a powerful tool for determining compound target engagement through measurement of changes to a protein's thermal stability upon ligand binding. Here, we present a HiBiT thermal shift assay (BiTSA) that deploys a quantitative peptide tag for determination of compound target engagement in the native cellular environment using a high throughput, plate-based luminescence readout. We demonstrate that BiTSA can rapidly assess cellular target engagement of small molecule ligands against their cognate targets and highlight two applications of BiTSA for differentiating small molecules targeting mutant KRAS and TP53.

4.
Nat Struct Mol Biol ; 28(6): 512-520, 2021 06.
Article in English | MEDLINE | ID: mdl-34117479

ABSTRACT

Very long chain fatty acids (VLCFAs) are essential building blocks for the synthesis of ceramides and sphingolipids. The first step in the fatty acid elongation cycle is catalyzed by the 3-keto acyl-coenzyme A (CoA) synthases (in mammals, ELOVL elongases). Although ELOVLs are implicated in common diseases, including insulin resistance, hepatic steatosis and Parkinson's, their underlying molecular mechanisms are unknown. Here we report the structure of the human ELOVL7 elongase, which comprises an inverted transmembrane barrel surrounding a 35-Å long tunnel containing a covalently attached product analogue. The structure reveals the substrate-binding sites in the narrow tunnel and an active site deep in the membrane. We demonstrate that chain elongation proceeds via an acyl-enzyme intermediate involving the second histidine in the canonical HxxHH motif. The unusual substrate-binding arrangement and chemistry suggest mechanisms for selective ELOVL inhibition, relevant for diseases where VLCFAs accumulate, such as X-linked adrenoleukodystrophy.


Subject(s)
Fatty Acid Elongases/chemistry , Fatty Acids/metabolism , Adrenoleukodystrophy/enzymology , Animals , Binding Sites , Catalytic Domain , Cloning, Molecular , Coenzyme A/metabolism , Crystallography, X-Ray , Fatty Acid Elongases/antagonists & inhibitors , Fatty Acid Elongases/metabolism , HEK293 Cells , Histidine/chemistry , Humans , Imidazoles/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sf9 Cells , Spectrometry, Mass, Electrospray Ionization/methods , Structure-Activity Relationship , Substrate Specificity
5.
Cell Chem Biol ; 28(9): 1271-1282.e12, 2021 09 16.
Article in English | MEDLINE | ID: mdl-33894161

ABSTRACT

Acute kidney injury (AKI) is a life-threatening disease with no known curative or preventive therapies. Data from multiple animal models and human studies have linked dysregulation of bone morphogenetic protein (BMP) signaling to AKI. Small molecules that potentiate endogenous BMP signaling should have a beneficial effect in AKI. We performed a high-throughput phenotypic screen and identified a series of FK506 analogs that act as potent BMP potentiators by sequestering FKBP12 from BMP type I receptors. We further showed that calcineurin inhibition was not required for this activity. We identified a calcineurin-sparing FK506 analog oxtFK through late-stage functionalization and structure-guided design. OxtFK demonstrated an improved safety profile in vivo relative to FK506. OxtFK stimulated BMP signaling in vitro and in vivo and protected the kidneys in an AKI mouse model, making it a promising candidate for future development as a first-in-class therapeutic for diseases with dysregulated BMP signaling.


Subject(s)
Acute Kidney Injury/drug therapy , Bone Morphogenetic Proteins/metabolism , Tacrolimus/pharmacology , Animals , Cells, Cultured , Disease Models, Animal , High-Throughput Screening Assays , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Phenotype , Tacrolimus/analogs & derivatives , Tacrolimus/chemistry
6.
Cell Chem Biol ; 27(9): 1124-1129, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32707038

ABSTRACT

Chemogenetic libraries, collections of well-defined chemical probes, provide tremendous value to biomedical research but require substantial effort to ensure diversity as well as quality of the contents. We have assembled a chemogenetic library by data mining and crowdsourcing institutional expertise. We are sharing our approach, lessons learned, and disclosing our current collection of 4,185 compounds with their primary annotated gene targets (https://github.com/Novartis/MoaBox). This physical collection is regularly updated and used broadly both within Novartis and in collaboration with external partners.


Subject(s)
Molecular Probes/chemistry , Small Molecule Libraries/chemistry , Biological Assay , Databases, Chemical , Drug Discovery , Humans , Machine Learning , Molecular Probes/metabolism , Small Molecule Libraries/metabolism
7.
Nat Commun ; 10(1): 3956, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477691

ABSTRACT

Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity.


Subject(s)
Anoctamins/metabolism , Endoplasmic Reticulum/metabolism , Lipids/chemistry , Phospholipid Transfer Proteins/metabolism , Amino Acid Sequence , Animals , Anoctamins/chemistry , Anoctamins/genetics , COS Cells , Calcium/chemistry , Cell Line, Tumor , Chlorocebus aethiops , Crystallography, X-Ray , HEK293 Cells , Humans , Molecular Dynamics Simulation , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Sequence Homology, Amino Acid , Sf9 Cells , Spodoptera
8.
Nat Chem Biol ; 15(2): 179-188, 2019 02.
Article in English | MEDLINE | ID: mdl-30643281

ABSTRACT

The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.


Subject(s)
Cation Transport Proteins/genetics , Endoplasmic Reticulum Stress/physiology , Receptor, Notch1/genetics , Animals , Apoptosis , Carrier Proteins/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/physiology , Cell Line , Cell Transformation, Neoplastic , Endoplasmic Reticulum/physiology , Humans , Mutation , Protein Transport , Receptor, Notch1/physiology , Signal Transduction , Zinc/metabolism
9.
Cell ; 175(4): 1045-1058.e16, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388443

ABSTRACT

Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic "lipid-altered" tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug.


Subject(s)
Antibiotics, Antitubercular/pharmacology , Congenital Disorders of Glycosylation/metabolism , Enzyme Inhibitors/pharmacology , N-Acetylglucosaminyltransferases/chemistry , Animals , Antibiotics, Antitubercular/chemistry , Binding Sites , Congenital Disorders of Glycosylation/genetics , Enzyme Inhibitors/chemistry , Female , HEK293 Cells , Hep G2 Cells , Humans , Lipid Metabolism , Mice , Molecular Docking Simulation , Mutation , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Protein Binding , Sf9 Cells , Spodoptera , Tunicamycin/chemistry , Tunicamycin/pharmacology , Uridine Diphosphate Glucuronic Acid/chemistry , Uridine Diphosphate Glucuronic Acid/metabolism
10.
PLoS One ; 10(6): e0127498, 2015.
Article in English | MEDLINE | ID: mdl-26098886

ABSTRACT

Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP) of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.


Subject(s)
Cell Proliferation/drug effects , Sesquiterpenes, Guaiane/pharmacology , TRPC Cation Channels/agonists , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Renal Cell/drug therapy , Cell Line, Tumor , HEK293 Cells , Humans , Indoles/pharmacology , Kidney Neoplasms/drug therapy , Mice , Mice, Nude , Piperidines/pharmacology , RNA Interference , RNA, Small Interfering , Rats , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , Transfection
11.
Structure ; 21(5): 844-53, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23623732

ABSTRACT

Many pathogenic bacteria encase themselves in a polysaccharide capsule that provides a barrier to the physical and immunological challenges of the host. The mechanism by which the capsule assembles around the bacterial cell is unknown. Wzi, an integral outer-membrane protein from Escherichia coli, has been implicated in the formation of group 1 capsules. The 2.6 Å resolution structure of Wzi reveals an 18-stranded ß-barrel fold with a novel arrangement of long extracellular loops that blocks the extracellular entrance and a helical bundle that plugs the periplasmic end. Mutagenesis shows that specific extracellular loops are required for in vivo capsule assembly. The data show that Wzi binds the K30 carbohydrate polymer and, crucially, that mutants functionally deficient in vivo show no binding to K30 polymer in vitro. We conclude that Wzi is a novel outer-membrane lectin that assists in the formation of the bacterial capsule via direct interaction with capsular polysaccharides.


Subject(s)
Bacterial Capsules/chemistry , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Antigens, Surface/chemistry , Antigens, Surface/metabolism , Bacterial Capsules/metabolism , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Lectins/chemistry , Lectins/metabolism , Phylogeny , Protein Conformation , Protein Folding
12.
J Med Chem ; 55(5): 2376-87, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22315981

ABSTRACT

Clostridium difficile (C. difficile) is a Gram positive, anaerobic bacterium that infects the lumen of the large intestine and produces toxins. This results in a range of syndromes from mild diarrhea to severe toxic megacolon and death. Alarmingly, the prevalence and severity of C. difficile infection are increasing; thus, associated morbidity and mortality rates are rising. 4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for the treatment of C. difficile infection. The medicinal chemistry effort focused on enhancing aqueous solubility relative to that of the natural product and previous development candidates (2, 3) and improving antibacterial activity. Structure-activity relationships, cocrystallographic interactions, pharmacokinetics, and efficacy in animal models of infection were characterized. These studies identified a series of dicarboxylic acid derivatives, which enhanced solubility/efficacy profile by several orders of magnitude compared to previously studied compounds and led to the selection of LFF571 (4) as an investigational new drug for treating C. difficile infection.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Clostridioides difficile/drug effects , Enterocolitis, Pseudomembranous/drug therapy , Thiazoles/chemical synthesis , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Cricetinae , Crystallography, X-Ray , Enterococcus/drug effects , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/chemistry , Female , Male , Mesocricetus , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptide Elongation Factor Tu/antagonists & inhibitors , Peptide Elongation Factor Tu/chemistry , Rats , Rats, Sprague-Dawley , Solubility , Staphylococcus aureus/drug effects , Streptococcus pyogenes/drug effects , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Water
13.
PLoS One ; 6(10): e25825, 2011.
Article in English | MEDLINE | ID: mdl-22053181

ABSTRACT

Antibiotic-resistant bacteria, particularly gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.


Subject(s)
Anti-Bacterial Agents/metabolism , Drug Resistance, Multiple, Bacterial , Escherichia coli/isolation & purification , Escherichia coli/metabolism , Mutation/genetics , Porins/genetics , Anti-Bacterial Agents/pharmacology , Cefotaxime/metabolism , Cefotaxime/pharmacology , Crystallography, X-Ray , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Hydrogen Bonding/drug effects , Ion Channel Gating/drug effects , Ion Transport/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Molecular Dynamics Simulation , Porins/chemistry
14.
J Med Chem ; 54(23): 8099-109, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-21999529

ABSTRACT

4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for their activity against Gram positive bacterial infections. Optimization efforts focused on improving the physicochemical properties (e.g., aqueous solubility and chemical stability) of the 4-aminothiazolyl natural product template while improving the in vitro and in vivo antibacterial activity. Structure-activity relationships were defined, and the solubility and efficacy profiles were improved over those of previous analogues and 1. These studies identified novel, potent, soluble, and efficacious elongation factor-Tu inhibitors, which bear cycloalkylcarboxylic acid side chains, and culminated in the selection of development candidates amide 48 and urethane 58.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Carboxylic Acids/chemical synthesis , Gram-Positive Bacterial Infections/drug therapy , Peptides, Cyclic/chemical synthesis , Thiazoles/chemical synthesis , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Area Under Curve , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Crystallography, X-Ray , Drug Resistance, Bacterial , Female , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/genetics , Male , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Mutation , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Rats , Rats, Sprague-Dawley , Sepsis/drug therapy , Solubility , Stereoisomerism , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology
15.
J Virol ; 85(13): 6548-56, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21507975

ABSTRACT

Viral replication relies on the host to supply nucleosides. Host enzymes involved in nucleoside biosynthesis are potential targets for antiviral development. Ribavirin (a known antiviral drug) is such an inhibitor that suppresses guanine biosynthesis; depletion of the intracellular GTP pool was shown to be the major mechanism to inhibit flavivirus. Along similar lines, inhibitors of the pyrimidine biosynthesis pathway could be targeted for potential antiviral development. Here we report on a novel antiviral compound (NITD-982) that inhibits host dihydroorotate dehydrogenase (DHODH), an enzyme required for pyrimidine biosynthesis. The inhibitor was identified through screening 1.8 million compounds using a dengue virus (DENV) infection assay. The compound contains an isoxazole-pyrazole core structure, and it inhibited DENV with a 50% effective concentration (EC(50)) of 2.4 nM and a 50% cytotoxic concentration (CC(50)) of >5 µM. NITD-982 has a broad antiviral spectrum, inhibiting both flaviviruses and nonflaviviruses with nanomolar EC(90)s. We also show that (i) the compound inhibited the enzymatic activity of recombinant DHODH, (ii) an NITD-982 analogue directly bound to the DHODH protein, (iii) supplementing the culture medium with uridine reversed the compound-mediated antiviral activity, and (iv) DENV type 2 (DENV-2) variants resistant to brequinar (a known DHODH inhibitor) were cross resistant to NITD-982. Collectively, the results demonstrate that the compound inhibits DENV through depleting the intracellular pyrimidine pool. In contrast to the in vitro potency, the compound did not show any efficacy in the DENV-AG129 mouse model. The lack of in vivo efficacy is likely due to the exogenous uptake of pyrimidine from the diet or to a high plasma protein-binding activity of the current compound.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dengue Virus/drug effects , Dengue/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrimidines/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , Dengue/virology , Dengue Virus/enzymology , Dengue Virus/pathogenicity , Dengue Virus/physiology , Dihydroorotate Dehydrogenase , Disease Models, Animal , High-Throughput Screening Assays , Humans , Mice , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pyrimidines/biosynthesis , Sigmodontinae , Treatment Outcome , Vero Cells , Virus Replication/drug effects
16.
Proc Natl Acad Sci U S A ; 108(17): 6739-44, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21502533

ABSTRACT

The search for novel therapeutic interventions for viral disease is a challenging pursuit, hallmarked by the paucity of antiviral agents currently prescribed. Targeting of viral proteins has the inextricable challenge of rise of resistance. Safe and effective vaccines are not possible for many viral pathogens. New approaches are required to address the unmet medical need in this area. We undertook a cell-based high-throughput screen to identify leads for development of drugs to treat respiratory syncytial virus (RSV), a serious pediatric pathogen. We identified compounds that are potent (nanomolar) inhibitors of RSV in vitro in HEp-2 cells and in primary human bronchial epithelial cells and were shown to act postentry. Interestingly, two scaffolds exhibited broad-spectrum activity among multiple RNA viruses. Using the chemical matter as a probe, we identified the targets and identified a common cellular pathway: the de novo pyrimidine biosynthesis pathway. Both targets were validated in vitro and showed no significant cell cytotoxicity except for activity against proliferative B- and T-type lymphoid cells. Corollary to this finding was to understand the consequences of inhibition of the target to the host. An in vivo assessment for antiviral efficacy failed to demonstrate reduced viral load, but revealed microscopic changes and a trend toward reduced pyrimidine pools and findings in histopathology. We present here a discovery program that includes screen, target identification, validation, and druggability that can be broadly applied to identify and interrogate other host factors for antiviral effect starting from chemical matter of unknown target/mechanism of action.


Subject(s)
Antiviral Agents , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Viruses/metabolism , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , B-Lymphocytes/virology , Cell Proliferation/drug effects , Chlorocebus aethiops , Dogs , Dose-Response Relationship, Drug , HeLa Cells , Humans , Jurkat Cells , Respiratory Syncytial Virus Infections/pathology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , T-Lymphocytes/virology , Vero Cells
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 12): 1621-5, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21139210

ABSTRACT

External polysaccharide capsules provide a physical barrier that is employed by many species of bacteria for the purposes of host evasion and persistence. Wzi is a 53 kDa outer membrane ß-barrel protein that is thought to play a role in the attachment of group 1 capsular polysaccharides to the cell surface. The purification and crystallization of an Escherichia coli homologue of Wzi is reported and diffraction data from native and selenomethionine-incorporated protein crystals are presented. Crystals of C-terminally His6-tagged Wzi diffracted to 2.8 Šresolution. Data processing showed that the crystals belonged to the orthorhombic space group C222, with unit-cell parameters a=128.8, b=152.8, c=94.4 Å, α=ß=γ=90°. A His-tagged selenomethionine-containing variant of Wzi has also been crystallized in the same space group and diffraction data have been recorded to 3.8 Šresolution. Data processing shows that the variant crystal has similar unit-cell parameters to the native crystal.


Subject(s)
Bacterial Capsules/metabolism , Bacterial Outer Membrane Proteins/chemistry , Biosynthetic Pathways , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , X-Ray Diffraction , Crystallization , Crystallography, X-Ray , Selenomethionine/chemistry
18.
J Mol Biol ; 394(5): 931-43, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-19815019

ABSTRACT

Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1-NmDsbA3) that are vital for the oxidative folding of many membrane and secreted proteins, and these three enzymes are considered to exhibit different substrate specificities. This has led to the suggestion that each N. meningitidis DsbA (NmDsbA) may play a specialized role in different stages of pathogenesis; however, the molecular and structural bases of the different roles of NmDsbAs are unclear. With the aim of determining the molecular basis for substrate specificity and how this correlates to pathogenesis, we undertook a biochemical and structural characterization of the three NmDsbAs. We report the 2.0-A-resolution crystal structure of the oxidized form of NmDsbA1, which adopted a canonical DsbA fold similar to that observed in the structures of NmDsbA3 and Escherichia coli DsbA (EcDsbA). Structural comparisons revealed variations around the active site and candidate peptide-binding region. Additionally, we demonstrate that all three NmDsbAs are strong oxidases with similar redox potentials; however, they differ from EcDsbA in their ability to be reoxidized by E. coli DsbB. Collectively, our studies suggest that the small structural differences between the NmDsbA enzymes and EcDsbA are functionally significant and are the likely determinants of substrate specificity.


Subject(s)
Neisseria meningitidis/enzymology , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/metabolism , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Escherichia coli Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Protein Binding , Protein Structure, Tertiary , Sequence Alignment
19.
Immunity ; 30(6): 777-88, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19464197

ABSTRACT

Ligation of the alphabeta T cell receptor (TCR) by a specific peptide-loaded major histocompatibility complex (pMHC) molecule initiates T cell signaling via the CD3 complex. However, the initial events that link antigen recognition to T cell signal transduction remain unclear. Here we show, via fluorescence-based experiments and structural analyses, that MHC-restricted antigen recognition by the alphabeta TCR results in a specific conformational change confined to the A-B loop within the alpha chain of the constant domain (Calpha). The apparent affinity constant of this A-B loop movement mirrored that of alphabeta TCR-pMHC ligation and was observed in two alphabeta TCRs with distinct pMHC specificities. The Ag-induced A-B loop conformational change could be inhibited by fixing the juxtapositioning of the constant domains and was shown to be reversible upon pMHC disassociation. Notably, the loop movement within the Calpha domain, although specific for an agonist pMHC ligand, was not observed with a pMHC antagonist. Moreover, mutagenesis of residues within the A-B loop impaired T cell signaling in an in vitro system of antigen-specific TCR stimulation. Collectively, our findings provide a basis for the earliest molecular events that underlie Ag-induced T cell triggering.


Subject(s)
Antigens/chemistry , Receptors, Antigen, T-Cell, alpha-beta/chemistry , T-Lymphocytes/immunology , Animals , Antigens/immunology , Humans , Major Histocompatibility Complex/immunology , Mutation/genetics , Peptides/chemistry , Peptides/immunology , Protein Binding/immunology , Protein Structure, Tertiary , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology
20.
J Am Chem Soc ; 129(2): 376-86, 2007 Jan 17.
Article in English | MEDLINE | ID: mdl-17212418

ABSTRACT

Building on prototype 1, which achieves 120 degrees of phosgene-powered unidirectional rotation to rotamer 6 (see Figure 5 in the full article), 7 was designed to accomplish repeated unidirectional rotation (see Scheme 7). Compound 7 contains an amino group on each blade of the triptycene and a 4-(dimethylamino)pyridine (DMAP) unit to selectively deliver phosgene (or its equivalent) to the amine in the "firing position". The synthesis of 7 is described: the key constructive steps are a benzyne addition to an anthracene to generate the triptycene, a stilbene photocyclization to construct the helicene, and a Stille coupling to incorporate the DMAP unit. The DMAP unit was shown to regioselectively relay 1,1'-carbonyldiimidazole (but not phosgene) to the proximal amino group, as designed, but rotation of the triptycene does not occur. Extensive attempts to troubleshoot the problem led to the conclusion that the requisite intramolecular urethane formation, as demonstrated in the prototype (1 --> 4), does not occur with 7 (to give 85) or 97 (to give 100). We speculate that either (i) hydrogen bonding between the hydroxypropyl group and functionality present in 7 but absent from 1 or (ii) a Bürgi-Dunitz (or similar) interaction involving the DMAP (see 106) prevents achievement of a conformation conducive to intramolecular urethane formation.


Subject(s)
4-Aminopyridine/analogs & derivatives , Macromolecular Substances/chemical synthesis , Phosgene/chemistry , 4-Aminopyridine/chemistry , Hydrogen Bonding , Macromolecular Substances/chemistry , Models, Molecular , Molecular Structure , Rotation , Stereoisomerism , Urethane/chemical synthesis , Urethane/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...