Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Chem Biol ; 28(5): 625-635.e5, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33503403

ABSTRACT

Wnt signaling plays a central role in tissue maintenance and cancer. Wnt activates downstream genes through ß-catenin, which interacts with TCF/LEF transcription factors. A major question is how this signaling is coordinated relative to tissue organization and renewal. We used a recently described class of small molecules that binds tubulin to reveal a molecular cascade linking stress signaling through ATM, HIPK2, and p53 to the regulation of TCF/LEF transcriptional activity. These data suggest a mechanism by which mitotic and genotoxic stress can indirectly modulate Wnt responsiveness to exert coherent control over cell shape and renewal. These findings have implications for understanding tissue morphogenesis and small-molecule anticancer therapeutics.


Subject(s)
Molecular Probes/pharmacology , Protein Serine-Threonine Kinases/metabolism , Small Molecule Libraries/pharmacology , TCF Transcription Factors/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Animals , Cells, Cultured , Humans , Male , Molecular Probes/chemistry , Small Molecule Libraries/chemistry , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , Wnt Signaling Pathway/drug effects , Xenopus , Zebrafish , beta Catenin/genetics , beta Catenin/metabolism
2.
Sci Transl Med ; 12(535)2020 03 18.
Article in English | MEDLINE | ID: mdl-32188720

ABSTRACT

Danon disease (DD) is a rare X-linked autophagic vacuolar myopathy associated with multiorgan dysfunction, including the heart, skeletal muscle, and liver. There are no specific treatments, and most male patients die from advanced heart failure during the second or third decade of life. DD is caused by mutations in the lysosomal-associated membrane protein 2 (LAMP2) gene, a key mediator of autophagy. LAMP2 has three isoforms: LAMP2A, LAMP2B, and LAMP2C. LAMP2B is the predominant isoform expressed in cardiomyocytes. This study evaluates the efficacy of human LAMP2B gene transfer using a recombinant adeno-associated virus 9 carrying human LAMP2B (AAV9.LAMP2B) in a Lamp2 knockout (KO) mouse, a DD model. AAV9.LAMP2B was intravenously injected into 2- and 6-month-old Lamp2 KO male mice to assess efficacy in adolescent and adult phenotypes. Lamp2 KO mice receiving AAV9.LAMP2B demonstrated dose-dependent restoration of human LAMP2B protein in the heart, liver, and skeletal muscle tissue. Impaired autophagic flux, evidenced by increased LC3-II, was abrogated by LAMP2B gene transfer in all tissues in both cohorts. Cardiac function was also improved, and transaminases were reduced in AAV9.LAMP2B-treated KO mice, indicating favorable effects on the heart and liver. Survival was also higher in the older cohort receiving high vector doses. No anti-LAMP2 antibodies were detected in mice that received AAV9.LAMP2B. In summary, LAMP2B gene transfer improves metabolic and physiologic function in a DD murine model, suggesting that a similar therapeutic approach may be effective for treating patients with this highly morbid disease.


Subject(s)
Glycogen Storage Disease Type IIb , Adolescent , Animals , Disease Models, Animal , Glycogen Storage Disease Type IIb/genetics , Humans , Lysosomal-Associated Membrane Protein 2/genetics , Male , Mice , Mice, Knockout , Phenotype
3.
Neuron ; 103(5): 802-819.e11, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31272829

ABSTRACT

Stress granules (SGs) form during cellular stress and are implicated in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). To yield insights into the role of SGs in pathophysiology, we performed a high-content screen to identify small molecules that alter SG properties in proliferative cells and human iPSC-derived motor neurons (iPS-MNs). One major class of active molecules contained extended planar aromatic moieties, suggesting a potential to intercalate in nucleic acids. Accordingly, we show that several hit compounds can prevent the RNA-dependent recruitment of the ALS-associated RNA-binding proteins (RBPs) TDP-43, FUS, and HNRNPA2B1 into SGs. We further demonstrate that transient SG formation contributes to persistent accumulation of TDP-43 into cytoplasmic puncta and that our hit compounds can reduce this accumulation in iPS-MNs from ALS patients. We propose that compounds with planar moieties represent a promising starting point to develop small-molecule therapeutics for treating ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Cytoplasmic Granules/drug effects , DNA-Binding Proteins/drug effects , Frontotemporal Dementia/metabolism , Motor Neurons/drug effects , Protein Aggregation, Pathological/metabolism , Small Molecule Libraries/pharmacology , Stress, Physiological/drug effects , Cell Line , Cytoplasmic Granules/metabolism , DNA Helicases/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells , Intrinsically Disordered Proteins , Motor Neurons/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , RNA-Binding Protein FUS/metabolism
4.
J Biol Chem ; 294(34): 12846-12854, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31300552

ABSTRACT

Chronic heart failure and cardiac arrhythmias have high morbidity and mortality, and drugs for the prevention and management of these diseases are a large part of the pharmaceutical market. Among these drugs are plant-derived cardiac glycosides, which have been used by various cultures over millennia as both medicines and poisons. We report that digoxin and related compounds activate the NLRP3 inflammasome in macrophages and cardiomyocytes at concentrations achievable during clinical use. Inflammasome activation initiates the maturation and release of the inflammatory cytokine IL-1ß and the programmed cell death pathway pyroptosis in a caspase-1-dependent manner. Notably, the same fluxes of potassium and calcium cations that affect heart contraction also induce inflammasome activation in human but not murine cells. Pharmaceuticals that antagonize these fluxes, including glyburide and verapamil, also inhibit inflammasome activation by cardiac glycosides. Cardiac glycoside-induced cellular cytotoxicity and IL-1ß signaling are likewise antagonized by inhibitors of the NLRP3 inflammasome or the IL-1 receptor-targeting biological agent anakinra. Our results inform on the molecular mechanism by which the inflammasome integrates the diverse signals that activate it through secondary signals like cation flux. Furthermore, this mechanism suggests a contribution of the inflammasome to the toxicity and adverse events associated with cardiac glycosides use in humans and that targeted anti-inflammatories could provide an additional adjunct therapeutic countermeasure.


Subject(s)
Digoxin/antagonists & inhibitors , Inflammasomes/metabolism , Animals , Cell Death/drug effects , Cells, Cultured , Cytokines/analysis , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Digoxin/pharmacology , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
5.
Cell Rep ; 23(7): 2168-2174, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768213

ABSTRACT

Understanding the mechanisms that control human cardiomyocyte proliferation might be applicable to regenerative medicine. We screened a whole genome collection of human miRNAs, identifying 96 to be capable of increasing proliferation (DNA synthesis and cytokinesis) of human iPSC-derived cardiomyocytes. Chemical screening and computational approaches indicated that most of these miRNAs (67) target different components of the Hippo pathway and that their activity depends on the nuclear translocation of the Hippo transcriptional effector YAP. 53 of the 67 miRNAs are present in human iPSC cardiomyocytes, yet anti-miRNA screening revealed that none are individually essential for basal proliferation of hiPSC cardiomyocytes despite the importance of YAP for proliferation. We propose a model in which multiple endogenous miRNAs redundantly suppress Hippo signaling to sustain the cell cycle of immature cardiomyocytes.


Subject(s)
MicroRNAs/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Cell Division/drug effects , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , DNA/biosynthesis , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/genetics , Myocytes, Cardiac/drug effects
6.
Genes Dev ; 31(13): 1325-1338, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28794185

ABSTRACT

Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1-4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications.


Subject(s)
Cell Lineage/genetics , Heart/embryology , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Organogenesis/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Cell Line , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Gene Editing , Gene Expression Regulation, Developmental/genetics , Heart Defects, Congenital/genetics , Humans , Mesoderm/cytology , Mesoderm/physiology , Mice , Mutation , Seeds , Xenopus laevis/embryology
7.
Nat Commun ; 7: 12088, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27357444

ABSTRACT

Increasing angiogenesis has long been considered a therapeutic target for improving heart function after injury such as acute myocardial infarction. However, gene, protein and cell therapies to increase microvascularization have not been successful, most likely because the studies failed to achieve regulated and concerted expression of pro-angiogenic and angiostatic factors needed to produce functional microvasculature. Here, we report that the transcription factor RBPJ is a homoeostatic repressor of multiple pro-angiogenic and angiostatic factor genes in cardiomyocytes. RBPJ controls angiogenic factor gene expression independently of Notch by antagonizing the activity of hypoxia-inducible factors (HIFs). In contrast to previous strategies, the cardiomyocyte-specific deletion of Rbpj increased microvascularization of the heart without adversely affecting cardiac structure or function even into old age. Furthermore, the loss of RBPJ in cardiomyocytes increased hypoxia tolerance, improved heart function and decreased pathological remodelling after myocardial infarction, suggesting that inhibiting RBPJ might be therapeutic for ischaemic injury.


Subject(s)
Coronary Vessels/growth & development , Immunoglobulin J Recombination Signal Sequence-Binding Protein/physiology , Myocytes, Cardiac/metabolism , Neovascularization, Physiologic , Animals , Female , Gene Expression Regulation , HEK293 Cells , Humans , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Microvessels/growth & development , Paracrine Communication
8.
Nature ; 525(7570): 479-85, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26375005

ABSTRACT

The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.


Subject(s)
Follistatin-Related Proteins/metabolism , Myocardium/metabolism , Pericardium/growth & development , Pericardium/metabolism , Regeneration , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , Female , Follistatin-Related Proteins/genetics , Humans , Male , Mice , Myoblasts, Cardiac/cytology , Myoblasts, Cardiac/drug effects , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Pericardium/cytology , Pericardium/drug effects , Rats , Regeneration/drug effects , Signal Transduction , Swine , Transgenes/genetics
9.
Bioorg Med Chem ; 23(17): 5282-92, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26278027

ABSTRACT

Cardiomyopathy is the leading cause of death worldwide. Despite progress in medical treatments, heart transplantation is one of the only current options for those with infarcted heart muscle. Stem cell differentiation technology may afford cell-based therapeutics that may lead to the generation of new, healthy heart muscle cells from undifferentiated stem cells. Our approach is to use small molecules to stimulate stem cell differentiation. Herein, we describe a novel class of 1,5-disubstituted benzimidazoles that induce differentiation of stem cells into cardiac cells. We report on the evaluation in vitro for cardiomyocyte differentiation and describe structure-activity relationship results that led to molecules with drug-like properties. The results of this study show the promise of small molecules to direct stem cell lineage commitment, to probe signaling pathways and to develop compounds for the stimulation of stem cells to repair damaged heart tissue.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cell Differentiation/drug effects , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Myocytes, Cardiac/cytology , Animals , Cells, Cultured , Mice , Myocytes, Cardiac/drug effects , Structure-Activity Relationship
10.
Methods Mol Biol ; 1263: 43-61, 2015.
Article in English | MEDLINE | ID: mdl-25618335

ABSTRACT

Chemical genomics has the unique potential to expose novel mechanisms of complex cellular biology through screening of small molecules in in vitro assays of a biological phenotype of interest, followed by target identification. In the case of disease-specific assays, the cellular proteins identified might constitute novel drug targets, and the small molecules themselves might be developed as drug leads. In cardiovascular biology, a chemical genomics approach to study the formation of cardiomyocyte, vascular endothelial, and smooth muscle lineages might contribute to therapeutic regeneration. Here, we describe methods used to develop high content screening assays implementing multipotent cardiovascular progenitors derived from human pluripotent stem cells and have identified novel compounds that direct cardiac differentiation.


Subject(s)
Cell Differentiation/drug effects , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Culture Techniques , Cell Line , Cell Separation/methods , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Phenotype , Pluripotent Stem Cells/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism
11.
Genes Dev ; 26(23): 2567-79, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23152446

ABSTRACT

Tight control over the segregation of endoderm, mesoderm, and ectoderm is essential for normal embryonic development of all species, yet how neighboring embryonic blastomeres can contribute to different germ layers has never been fully explained. We postulated that microRNAs, which fine-tune many biological processes, might modulate the response of embryonic blastomeres to growth factors and other signals that govern germ layer fate. A systematic screen of a whole-genome microRNA library revealed that the let-7 and miR-18 families increase mesoderm at the expense of endoderm in mouse embryonic stem cells. Both families are expressed in ectoderm and mesoderm, but not endoderm, as these tissues become distinct during mouse and frog embryogenesis. Blocking let-7 function in vivo dramatically affected cell fate, diverting presumptive mesoderm and ectoderm into endoderm. siRNA knockdown of computationally predicted targets followed by mutational analyses revealed that let-7 and miR-18 down-regulate Acvr1b and Smad2, respectively, to attenuate Nodal responsiveness and bias blastomeres to ectoderm and mesoderm fates. These findings suggest a crucial role for the let-7 and miR-18 families in germ layer specification and reveal a remarkable conservation of function from amphibians to mammals.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental , Genome/genetics , Germ Layers/embryology , MicroRNAs/metabolism , Animals , Cells, Cultured , DNA Mutational Analysis , Embryonic Stem Cells , Gene Knockdown Techniques , Mice , MicroRNAs/genetics , Xenopus laevis
12.
Curr Protoc Stem Cell Biol ; Chapter 1: Unit 1F.13, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23154934

ABSTRACT

This unit describes a robust protocol for producing multipotent Kdr-expressing mesoderm progenitor cells in serum-free conditions, and for functional genomics screening using these cells. Kdr-positive cells are able to differentiate into a wide array of mesodermal derivatives, including vascular endothelial cells, cardiomyocytes, hematopoietic progenitors, and smooth muscle cells. The efficient generation of such progenitor cells is of particular interest because it permits subsequent steps in cardiovascular development to be analyzed in detail, including deciphering the mechanisms that direct differentiation. In addition, the oligonucleotide transfection protocol used to functionally screen siRNA and miRNA libraries is a powerful tool to reveal networks of genes, signaling proteins, and miRNAs that control the diversification of cardiovascular lineages from multipotent progenitors. Technical limitations, troubleshooting, and potential applications of these methods are discussed.


Subject(s)
Embryonic Stem Cells/cytology , Genomics , Mesoderm/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Buffers , Cell Culture Techniques , Culture Media, Serum-Free/pharmacology , Genetic Markers , Genetic Techniques , Hepatocyte Nuclear Factor 3-beta/metabolism , Induced Pluripotent Stem Cells/cytology , Mesoderm/pathology , Mice , RNA, Small Interfering/metabolism , Stem Cells/cytology
13.
J Med Chem ; 55(22): 9946-57, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23130626

ABSTRACT

A medium-throughput murine embryonic stem cell (mESC)-based high-content screening of 17000 small molecules for cardiogenesis led to the identification of a b-annulated 1,4-dihydropyridine (1,4-DHP) that inhibited transforming growth factor ß (TGFß)/Smad signaling by clearing the type II TGFß receptor from the cell surface. Because this is an unprecedented mechanism of action, we explored the series' structure-activity relationship (SAR) based on TGFß inhibition, and evaluated SAR aspects for cell-surface clearance of TGFß receptor II (TGFBR2) and for biological activity in mESCs. We determined a pharmacophore and generated 1,4-DHPs with IC(50)s for TGFß inhibition in the nanomolar range (e.g., compound 28, 170 nM). Stereochemical consequences of a chiral center at the 4-position was evaluated, revealing 10- to 15-fold more potent TGFß inhibition for the (+)- than the (-) enantiomer. This stereopreference was not observed for the low level inhibition against Activin A signaling and was reversed for effects on calcium handling in HL-1 cells.


Subject(s)
Cell Differentiation/drug effects , Dihydropyridines/pharmacology , Embryonic Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Quinolones/pharmacology , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Transforming Growth Factor beta/antagonists & inhibitors , Activins/antagonists & inhibitors , Activins/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Dihydropyridines/chemical synthesis , Embryonic Stem Cells/cytology , Humans , Mice , Molecular Structure , Myocytes, Cardiac/cytology , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Quinolones/chemical synthesis , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism , Stereoisomerism , Structure-Activity Relationship , Transforming Growth Factor beta/metabolism
14.
Cell Stem Cell ; 11(2): 242-52, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22862949

ABSTRACT

The cellular signals controlling the formation of cardiomyocytes, vascular smooth muscle, and endothelial cells from stem cell-derived mesoderm are poorly understood. To identify these signals, a mouse embryonic stem cell (ESC)-based differentiation assay was screened against a small molecule library resulting in a 1,4-dihydropyridine inducer of type II TGF-ß receptor (TGFBR2) degradation-1 (ITD-1). ITD analogs enhanced proteasomal degradation of TGFBR2, effectively clearing the receptor from the cell surface and selectively inhibiting intracellular signaling (IC(50) ~0.4-0.8 µM). ITD-1 was used to evaluate TGF-ß involvement in mesoderm formation and cardiopoietic differentiation, which occur sequentially during early development, revealing an essential role in both processes in ESC cultures. ITD-1 selectively enhanced the differentiation of uncommitted mesoderm to cardiomyocytes, but not to vascular smooth muscle and endothelial cells. ITD-1 is a highly selective TGF-ß inhibitor and reveals an unexpected role for TGF-ß signaling in controlling cardiomyocyte differentiation from multipotent cardiovascular precursors.


Subject(s)
Dihydropyridines/pharmacology , Down-Regulation/drug effects , Embryonic Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/metabolism , Proteolysis/drug effects , Receptors, Transforming Growth Factor beta/deficiency , Receptors, Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation/drug effects , Cells, Cultured , Dihydropyridines/chemistry , Dose-Response Relationship, Drug , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epidermal Growth Factor/deficiency , Epidermal Growth Factor/metabolism , HEK293 Cells , Humans , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Molecular Weight , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neoplasm Proteins/deficiency , Neoplasm Proteins/metabolism , Receptor, Transforming Growth Factor-beta Type II , Structure-Activity Relationship
15.
Chem Biol ; 19(7): 806-18, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22840769

ABSTRACT

Hepatocyte nuclear factor (HNF)4α is a central regulator of gene expression in cell types that play a critical role in metabolic homeostasis, including hepatocytes, enterocytes, and pancreatic ß cells. Although fatty acids were found to occupy the HNF4α ligand-binding pocket and were proposed to act as ligands, there is controversy about both the nature of HNF4α ligands as well as the physiological role of the binding. Here, we report the discovery of potent synthetic HNF4α antagonists through a high-throughput screen for effectors of the human insulin promoter. These molecules bound to HNF4α with high affinity and modulated the expression of known HNF4α target genes. Notably, they were found to be selectively cytotoxic to cancer cell lines in vitro and in vivo, although in vivo potency was limited by suboptimal pharmacokinetic properties. The discovery of bioactive modulators for HNF4α raises the possibility that diseases involving HNF4α, such as diabetes and cancer, might be amenable to pharmacologic intervention by modulation of HNF4α activity.


Subject(s)
Benzimidazoles/pharmacology , Drug Discovery , Hepatocyte Nuclear Factor 4/antagonists & inhibitors , High-Throughput Screening Assays , Insulin/genetics , Promoter Regions, Genetic/genetics , Sulfonamides/pharmacology , Benzimidazoles/chemistry , Dose-Response Relationship, Drug , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Humans , Models, Molecular , Molecular Structure , PPAR gamma/agonists , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Structure-Activity Relationship , Sulfonamides/chemistry
16.
J Biomol Screen ; 16(9): 1068-80, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21900202

ABSTRACT

The standard (STD) 5 × 5 hybrid median filter (HMF) was previously described as a nonparametric local backestimator of spatially arrayed microtiter plate (MTP) data. As such, the HMF is a useful tool for mitigating global and sporadic systematic error in MTP data arrays. Presented here is the first known HMF correction of a primary screen suffering from systematic error best described as gradient vectors. Application of the STD 5 × 5 HMF to the primary screen raw data reduced background signal deviation, thereby improving the assay dynamic range and hit confirmation rate. While this HMF can correct gradient vectors, it does not properly correct periodic patterns that may present in other screening campaigns. To address this issue, 1 × 7 median and a row/column 5 × 5 hybrid median filter kernels (1 × 7 MF and RC 5 × 5 HMF) were designed ad hoc, to better fit periodic error patterns. The correction data show periodic error in simulated MTP data arrays is reduced by these alternative filter designs and that multiple corrective filters can be combined in serial operations for progressive reduction of complex error patterns in a MTP data array.


Subject(s)
High-Throughput Screening Assays/standards , Data Interpretation, Statistical , Models, Statistical , Quality Control
17.
Assay Drug Dev Technol ; 8(2): 238-50, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20230301

ABSTRACT

Microtiter plate (MTP) assays often exhibit distortions, such as caused by edge-dependent drying and robotic fluid handling variation. Distortions vary by assay system but can have both systematic patterns (predictable from plate to plate) and random (sporadic and unpredictable) components. Random errors can be especially difficult to resolve by assay optimization alone, and postassay algorithms reported to date have smoothing effects that often blunt hits. We implemented a 5 x 5 bidirectional hybrid median filter (HMF) as a local background estimator to scale each data point to the MTP global background median and compared it with a recently described Discrete Fourier Transform (DFT) technique for correcting errors on computationally and experimentally generated MTP datasets. Experimental data were generated from a 384-well format fluorescent bioassay using cells engineered to express eGFP and DsRED. MTP arrays were produced with and without control treatments used to simulate hits in random wells. The HMF demonstrated the greatest improvements in MTP coefficients of variation and dynamic range (defined by the ratio of average hit amplitude to standard deviation, SD) for all synthetic and experimental MTPs examined. After HMF application to a MTP of eGFP signal from mouse insulinoma (MIN6) cells obtained by a plate-reader, the assay coefficient of variation (CV) decreased from 8.0% in the raw dataset to 5.1% and the hit amplitudes were reduced by only 1% while the DFT method increased the CV by 36.0% and reduced the hit amplitude by 21%. Thus, our results show that the bidirectional HMF provides superior corrections of MTP data distortions while at the same time preserving hit amplitudes and improving dynamic range. The software to perform hybrid median filter MTP corrections is available at http://bccg.burnham.org/HTS/HMF_Download_Page.aspx, password is pbushway.


Subject(s)
Drug Evaluation, Preclinical/statistics & numerical data , Algorithms , Animals , Biological Assay , Cell Line, Tumor , Data Interpretation, Statistical , Fourier Analysis , Lentivirus Infections/genetics , Mice , Promoter Regions, Genetic , Robotics , Software
18.
Pediatr Cardiol ; 30(5): 635-42, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19319460

ABSTRACT

Debilitating cardiomyocyte loss underlies the progression to heart failure. Although there have been significant advances in treatment, current therapies are intended to improve or preserve heart function rather than regenerate lost myocardium. A major hurdle in implementing a cell-based regenerative therapy is the inefficient differentiation of cardiomyocytes from either endogenous or exogenous stem cell sources. Moreover, cardiomyocytes that develop in human embryonic stem cell (hESC) or human-induced pluripotent stem cell (hIPSC) cultures are comparatively immature, even after prolonged culture, and differences in their calcium handling, ion channel, and force generation properties relative to adult cardiomyocytes raise concerns of improper integration and function after transplantation. Thus, the discovery of natural and novel small molecule synthetic regulators of differentiation and maturation would accelerate the development of stem-cell-based myocardial therapies. Here, we document recent advances in defining natural signaling pathways that direct the multistep cardiomyogenic differentiation program and the development of small molecules that might be used to enhance differentiation as well as the potential characteristics of lead candidates for pharmaceutical stimulation of endogenous myocardial replacement.


Subject(s)
Embryonic Stem Cells/physiology , Heart/embryology , Myocytes, Cardiac/physiology , Regeneration/physiology , Cell Differentiation , Humans , Regeneration/drug effects , Signal Transduction
19.
Assay Drug Dev Technol ; 6(4): 557-67, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18795873

ABSTRACT

We evaluated the performance of two plate readers (the Beckman Coulter [Fullerton, CA] DTX and the PerkinElmer [Wellesley, MA] EnVision) and a plate imager (the General Electric [Fairfield, CT] IN Cell 1000 Analyzer) in a primary fluorescent cellular screen of 10,000 Molecular Libraries Screening Center Network library compounds for up- and down-regulation of vascular cell adhesion molecule (VCAM)-1, which has been shown to be up-regulated in atherothrombotic vascular disease and is a general indicator of chronic inflammatory disease. Prior to screening, imaging of a twofold, six-step titration of fluorescent cells in a 384-well test plate showed greater consistency, sensitivity, and dynamic range of signal detection curves throughout the detection range, as compared to the plate readers. With the same 384-well test plate, the detection limits for fluorescent protein-labeled cells on the DTX and EnVision instruments were 2,250 and 560 fluorescent cells per well, respectively, as compared to 280 on the IN Cell 1000. During VCAM screening, sensitivity was critical for detection of antagonists, which reduced brightness of the primary immunofluorescence readout; inhibitor controls yielded Z' values of 0.41 and 0.16 for the IN Cell 1000 and EnVision instruments, respectively. The best 1% of small molecule inhibitors from all platforms were visually confirmed using images from the IN Cell 1000. The EnVision and DTX plate readers mutually identified approximately 57% and 21%, respectively, of the VCAM-1 inhibitors visually confirmed in the IN Cell best 1% of inhibitors. Furthermore, the plate reader hits were largely exclusive, with only 6% agreement across all platforms (three hits out of 47). Taken together, the imager outperformed the plate readers at hit detection in this bimodal assay because of superior sensitivity and had the advantage of speeding hit confirmation during post-acquisition analysis.


Subject(s)
Drug Evaluation, Preclinical/instrumentation , Automation , Cell Movement/physiology , Coloring Agents , Down-Regulation , Drug Evaluation, Preclinical/methods , Image Processing, Computer-Assisted , Indicators and Reagents , Microscopy, Fluorescence , Reproducibility of Results , T-Lymphocytes/metabolism , T-Lymphocytes/physiology , Tumor Necrosis Factor-alpha/biosynthesis , Up-Regulation , Vascular Cell Adhesion Molecule-1/biosynthesis
20.
Methods Enzymol ; 414: 300-16, 2006.
Article in English | MEDLINE | ID: mdl-17110199

ABSTRACT

Realizing the potential of stem cell biology requires the modulation of self-renewal and differentiation, both of which are incompletely understood. This chapter describes methods for the design, development, and implementation of cell-based screens of small molecules, genes and expressed proteins for modulation of stem and progenitor cell fate. These include the engineering of embryonic and other stem cells with gene promoter-reporter protein constructs and their application in automated screening. We discuss considerations of promoter reporter selection, assay development and implementation, and image acquisition, analysis, and data handling. Such black-box screens are useful for the identification of probes of developmental processes and should provide tools that will identify druggable targets for biochemical assays.


Subject(s)
Cell Culture Techniques , Hematopoietic Stem Cells/cytology , Stem Cells/cytology , Animals , Cell Differentiation , Cell Line , Embryo, Mammalian/pathology , Genes, Reporter , Genome , Humans , Lentivirus/genetics , Mice , Promoter Regions, Genetic , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...