Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 74(10): 3923-6, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19422266

ABSTRACT

iii-Phosphorylated cavitands incorporating an N-methylpyridinium guest moiety as the fourth bridging unit form supramolecular associations by inclusion of the charged CH(3)N(+)-pyridinium head into a neighboring host cavity. The dimeric association is favored in solution and was characterized by NMR, mass spectrometry, DOSY experiments, and single crystal X-ray analysis.

2.
Chemistry ; 13(24): 6891-8, 2007.
Article in English | MEDLINE | ID: mdl-17535002

ABSTRACT

Bottom-up fabrication of 3D organic nanostructures on Si(100) surfaces has been achieved by a two-step procedure. Tetradentate cavitand 1 was grafted on the Si surface together with 1-octene (Oct) as a spatial spectator by photochemical hydrosilylation. Ligand exchange between grafted cavitand 1 and self-assembled homocage 2, derived from cavitand 5 bearing a fluorescence marker, led to the formation of coordination cages on Si(100). Formation, quantification, and distribution of the nanoscale molecular containers on a silicon surface was assessed by using three complementary analytical techniques (AFM, XPS, and fluorescence) and validated by control experiments on cavitand-free silicon surfaces. Interestingly, the fluorescence of pyrene at approximately 4 nm above the Si(100) surface can be clearly observed.

3.
Langmuir ; 22(26): 11126-33, 2006 Dec 19.
Article in English | MEDLINE | ID: mdl-17154593

ABSTRACT

Cavitand molecules having double bond terminated alkyl chains and different bridging groups at the upper rim have been grafted on H-terminated Si(100) surface via photochemical hydrosilylation of the double bonds. Pure and mixed monolayers have been obtained from mesitylene solutions of either pure cavitand or cavitand/1-octene mixtures. Angle resolved high-resolution X-ray photoelectron spectroscopy has been used as the main tool for the monolayer characterization. The cavitand decorated surface consists of Si-C bonded layers with the upper rim at the top of the layer. Grafting of pure cavitands leads to not-well-packed layers, which are not able to efficiently passivate the Si(100) surface. By contrast, monolayers obtained from cavitand/1-octene mixtures consist of well-packed layers since they prevent silicon oxidation after aging. AFM measurements showed that these monolayers have a structured topography, with objects protruding from the Si(100) surface with average heights compatible with the expected ones for cavitand molecules.

4.
J Org Chem ; 71(7): 2617-24, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16555812

ABSTRACT

The self-assembly between bidentate cavitand ligands and mono/dinuclear metal precursors to give cavitand frameworks has been explored. For this purpose, two new cavitands bearing AB and AC phenylpyridyl moieties at the upper rim have been synthesized. A series of self-assembled molecular dimers featuring fac-Re(CO)(3)Br as metal corners have been prepared and characterized. Two possible dimeric structures (C-shaped and S-shaped) are possible when AB cavitand 2 is used in the self-assembly reaction; only one is obtained in the case of AC cavitand 3. In addition, the self-assembly of AB-dibridged cavitand 2 with dinuclear Pd/Pt metal precursors 5a and 5b has been studied. At this level of complexity, the self-assembly can lead to more than one structure. Several different final structures have been envisioned and their formation analyzed in silico and in solution. Out of the three possible cyclic structures (dimer, trimer, and tetramer), only the entropically favored dimer 6a (6b) is formed, as predicted from molecular modeling and demonstrated by PGSE NMR experiments.

5.
Chemistry ; 11(10): 3136-48, 2005 May 06.
Article in English | MEDLINE | ID: mdl-15776494

ABSTRACT

The self-assembly of open ditopic and tetratopic cavitand complexes has been investigated by using monofunctionalized cavitand ligands and suitable metal precursors. In the case of ditopic complexes, self-assembly protocols, leading exclusively to the formation of both thermodynamically stable cis-Pt square-planar complexes 8 and 9 and the kinetically inert fac-Re octahedral complex 14, have been elaborated. The use of cis-[Pt(CH3)CN)2Cl2] as metal precursor led to the formation of monotopic trans-10 and ditopic trans-11 cavitand complexes, while cis-[Pt(dmso)2Cl2] afforded both cis-13 and trans-11 isomers. The self-assembly of tetratopic cavitand complexes has been achieved by using mononuclear [Pd(CH3CN)4(BF4)2] and dinuclear [M2(tppb)(OTf)4] (19: M = Pt; 20: M = Pd) metal precursors. Only the tetratopic dinuclear complexes 21 and 22 were stable. The ligand configuration with two phosphorus and two cavitand ligands at the metal centers is the most appropriate to build tetratopic cavitand complexes with sufficient kinetic stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...