Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Orphanet J Rare Dis ; 18(1): 109, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161573

ABSTRACT

BACKGROUND: Many patients with rare diseases are still lacking a timely diagnosis and approved therapies for their condition despite the tremendous efforts of the research community, biopharmaceutical, medical device industries, and patient support groups. The development of clinical research networks for rare diseases offers a tremendous opportunity for patients and multi-disciplinary teams to collaborate, share expertise, gain better understanding on specific rare diseases, and accelerate clinical research and innovation. Clinical Research Networks have been developed at a national or continental level, but global collaborative efforts to connect them are still lacking. The International Rare Diseases Research Consortium set a Task Force on Clinical Research Networks for Rare Diseases with the objective to analyse the structure and attributes of these networks and to identify the barriers and needs preventing their international collaboration. The Task Force created a survey and sent it to pre-identified clinical research networks located worldwide. RESULTS: A total of 34 responses were received. The survey analysis demonstrated that clinical research networks are diverse in their membership composition and emphasize community partnerships including patient groups, health care providers and researchers. The sustainability of the networks is mostly supported by public funding. Activities and research carried out at the networks span the research continuum from basic to clinical to translational research studies. Key elements and infrastructures conducive to collaboration are well adopted by the networks, but barriers to international interoperability are clearly identified. These hurdles can be grouped into five categories: funding limitation; lack of harmonization in regulatory and contracting process; need for common tools and data standards; need for a governance framework and coordination structures; and lack of awareness and robust interactions between networks. CONCLUSIONS: Through this analysis, the Task Force identified key elements that should support both developing and established clinical research networks for rare diseases in implementing the appropriate structures to achieve international interoperability worldwide. A global roadmap of actions and a specific research agenda, as suggested by this group, provides a platform to identify common goals between these networks.


Subject(s)
Biological Products , Rare Diseases , Humans , Advisory Committees , Health Personnel , Translational Research, Biomedical
3.
Hum Mutat ; 43(6): 717-733, 2022 06.
Article in English | MEDLINE | ID: mdl-35178824

ABSTRACT

Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes.


Subject(s)
Genomics , Rare Diseases , Exome , Genetic Association Studies , Genomics/methods , Humans , Phenotype , Rare Diseases/diagnosis , Rare Diseases/genetics
4.
Hum Mutat ; 43(6): 800-811, 2022 06.
Article in English | MEDLINE | ID: mdl-35181971

ABSTRACT

Despite recent progress in the understanding of the genetic etiologies of rare diseases (RDs), a significant number remain intractable to diagnostic and discovery efforts. Broad data collection and sharing of information among RD researchers is therefore critical. In 2018, the Care4Rare Canada Consortium launched the project C4R-SOLVE, a subaim of which was to collect, harmonize, and share both retrospective and prospective Canadian clinical and multiomic data. Here, we introduce Genomics4RD, an integrated web-accessible platform to share Canadian phenotypic and multiomic data between researchers, both within Canada and internationally, for the purpose of discovering the mechanisms that cause RDs. Genomics4RD has been designed to standardize data collection and processing, and to help users systematically collect, prioritize, and visualize participant information. Data storage, authorization, and access procedures have been developed in collaboration with policy experts and stakeholders to ensure the trusted and secure access of data by external researchers. The breadth and standardization of data offered by Genomics4RD allows researchers to compare candidate disease genes and variants between participants (i.e., matchmaking) for discovery purposes, while facilitating the development of computational approaches for multiomic data analyses and enabling clinical translation efforts for new genetic technologies in the future.


Subject(s)
Rare Diseases , Canada , Genetic Association Studies , Humans , Phenotype , Prospective Studies , Rare Diseases/diagnosis , Rare Diseases/genetics , Retrospective Studies
5.
Genet Med ; 24(1): 100-108, 2022 01.
Article in English | MEDLINE | ID: mdl-34906465

ABSTRACT

PURPOSE: Matchmaking has emerged as a useful strategy for building evidence toward causality of novel disease genes in patients with undiagnosed rare diseases. The Matchmaker Exchange (MME) is a collaborative initiative that facilitates international data sharing for matchmaking purposes; however, data on user experience is limited. METHODS: Patients enrolled as part of the Finding of Rare Disease Genes in Canada (FORGE) and Care4Rare Canada research programs had their exome sequencing data reanalyzed by a multidisciplinary research team over a 2-year period. Compelling variants in genes not previously associated with a human phenotype were submitted through the MME node PhenomeCentral, and outcomes were collected. RESULTS: In this study, 194 novel candidate genes were submitted to the MME, resulting in 1514 matches, and 15% of the genes submitted resulted in collaborations. Most submissions resulted in at least 1 match, and most matches were with GeneMatcher (82%), where additional email exchange was required to evaluate the match because of the lack of phenotypic or inheritance information. CONCLUSION: Matchmaking through the MME is an effective way to investigate novel candidate genes; however, it is a labor-intensive process. Engagement from the community to contribute phenotypic, genotypic, and inheritance data will ensure that matchmaking continues to be a useful approach in the future.


Subject(s)
Databases, Genetic , Information Dissemination , Rare Diseases , Canada , Genetic Association Studies , Humans , Information Dissemination/methods , Phenotype , Rare Diseases/diagnosis , Rare Diseases/genetics
6.
Cell Genom ; 1(2)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-35072136

ABSTRACT

The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits.

7.
Curr Protoc Hum Genet ; 103(1): e92, 2019 09.
Article in English | MEDLINE | ID: mdl-31479590

ABSTRACT

The Human Phenotype Ontology (HPO) is a standardized set of phenotypic terms that are organized in a hierarchical fashion. It is a widely used resource for capturing human disease phenotypes for computational analysis to support differential diagnostics. The HPO is frequently used to create a set of terms that accurately describe the observed clinical abnormalities of an individual being evaluated for suspected rare genetic disease. This profile is compared with computational disease profiles in the HPO database with the aim of identifying genetic diseases with comparable phenotypic profiles. The computational analysis can be coupled with the analysis of whole-exome or whole-genome sequencing data through applications such as Exomiser. This article explains how to choose an optimal set of HPO terms for these cases and enter them with software, such as PhenoTips and PatientArchive, and demonstrates how to use Phenomizer and Exomiser to generate a computational differential diagnosis. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Biological Ontologies , Computational Biology , Databases, Genetic , Genetic Diseases, Inborn/diagnosis , Software , Diagnosis, Differential , Exome/genetics , Genetic Diseases, Inborn/genetics , Humans , Phenotype , Whole Genome Sequencing
8.
Curr Protoc Hum Genet ; 95: 9.31.1-9.31.15, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044468

ABSTRACT

In well over half of the individuals with rare disease who undergo clinical or research next-generation sequencing, the responsible gene cannot be determined. Some reasons for this relatively low yield include unappreciated phenotypic heterogeneity; locus heterogeneity; somatic and germline mosaicism; variants of uncertain functional significance; technically inaccessible areas of the genome; incorrect mode of inheritance investigated; and inadequate communication between clinicians and basic scientists with knowledge of particular genes, proteins, or biological systems. To facilitate such communication and improve the search for patients or model organisms with similar phenotypes and variants in specific candidate genes, we have developed the Matchmaker Exchange (MME). MME was created to establish a federated network connecting databases of genomic and phenotypic data using a common application programming interface (API). To date, seven databases can exchange data using the API (GeneMatcher, PhenomeCentral, DECIPHER, MyGene2, matchbox, Australian Genomics Health Alliance Patient Archive, and Monarch Initiative; the latter included for model organism matching). This article guides usage of the MME for rare disease gene discovery. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Databases, Genetic , Genetic Association Studies/methods , Genetic Predisposition to Disease , Rare Diseases/genetics , Animals , Computational Biology/methods , Genomics/methods , Humans , Software , Web Browser
9.
Nucleic Acids Res ; 45(D1): D865-D876, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27899602

ABSTRACT

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.


Subject(s)
Biological Ontologies , Computational Biology , Genomics , Phenotype , Algorithms , Computational Biology/methods , Genetic Association Studies/methods , Genomics/methods , Humans , Precision Medicine/methods , Rare Diseases/diagnosis , Rare Diseases/etiology , Software , Translational Research, Biomedical/methods
10.
Nat Struct Mol Biol ; 23(6): 566-73, 2016 06.
Article in English | MEDLINE | ID: mdl-27159559

ABSTRACT

The inability to digest lactose, due to lactase nonpersistence, is a common trait in adult mammals, except in certain human populations that exhibit lactase persistence. It is not known how the lactase gene is dramatically downregulated with age in most individuals but remains active in some individuals. We performed a comprehensive epigenetic study of human and mouse small intestines, by using chromosome-wide DNA-modification profiling and targeted bisulfite sequencing. Epigenetically controlled regulatory elements accounted for the differences in lactase mRNA levels among individuals, intestinal cell types and species. We confirmed the importance of these regulatory elements in modulating lactase mRNA levels by using CRISPR-Cas9-induced deletions. Genetic factors contribute to epigenetic changes occurring with age at the regulatory elements, because lactase-persistence and lactase-nonpersistence DNA haplotypes demonstrated markedly different epigenetic aging. Thus, genetic factors enable a gradual accumulation of epigenetic changes with age, thereby influencing phenotypic outcome.


Subject(s)
Epigenesis, Genetic , Lactase/genetics , Adult , Aged , Aging , Animals , CRISPR-Cas Systems , Chromosomes/genetics , DNA Methylation , Humans , Jejunum/enzymology , Jejunum/metabolism , Lactose Intolerance/enzymology , Lactose Intolerance/genetics , Mice , Mice, Inbred C57BL , Middle Aged , Promoter Regions, Genetic , RNA, Messenger/genetics , Young Adult
11.
Genet Med ; 18(6): 608-17, 2016 06.
Article in English | MEDLINE | ID: mdl-26562225

ABSTRACT

PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease-gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein-protein association neighbors. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease-gene associations and ranked the correct seeded variant in up to 87% when detectable disease-gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders.Genet Med 18 6, 608-617.


Subject(s)
Exome Sequencing/methods , Exome/genetics , Rare Diseases/genetics , Rare Diseases/physiopathology , Animals , Computational Biology , Databases, Genetic , Disease Models, Animal , Genetic Association Studies , Genetic Variation , Humans , Mice , National Institutes of Health (U.S.) , Patients , Phenotype , Rare Diseases/diagnosis , Rare Diseases/epidemiology , United States , Zebrafish
12.
Nat Protoc ; 10(12): 2004-15, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26562621

ABSTRACT

Exomiser is an application that prioritizes genes and variants in next-generation sequencing (NGS) projects for novel disease-gene discovery or differential diagnostics of Mendelian disease. Exomiser comprises a suite of algorithms for prioritizing exome sequences using random-walk analysis of protein interaction networks, clinical relevance and cross-species phenotype comparisons, as well as a wide range of other computational filters for variant frequency, predicted pathogenicity and pedigree analysis. In this protocol, we provide a detailed explanation of how to install Exomiser and use it to prioritize exome sequences in a number of scenarios. Exomiser requires ∼3 GB of RAM and roughly 15-90 s of computing time on a standard desktop computer to analyze a variant call format (VCF) file. Exomiser is freely available for academic use from http://www.sanger.ac.uk/science/tools/exomiser.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing/methods , Genetic Testing/methods , Humans , Sequence Analysis, DNA/methods , Software
13.
Hum Mutat ; 36(10): 931-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26251998

ABSTRACT

The discovery of disease-causing mutations typically requires confirmation of the variant or gene in multiple unrelated individuals, and a large number of rare genetic diseases remain unsolved due to difficulty identifying second families. To enable the secure sharing of case records by clinicians and rare disease scientists, we have developed the PhenomeCentral portal (https://phenomecentral.org). Each record includes a phenotypic description and relevant genetic information (exome or candidate genes). PhenomeCentral identifies similar patients in the database based on semantic similarity between clinical features, automatically prioritized genes from whole-exome data, and candidate genes entered by the users, enabling both hypothesis-free and hypothesis-driven matchmaking. Users can then contact other submitters to follow up on promising matches. PhenomeCentral incorporates data for over 1,000 patients with rare genetic diseases, contributed by the FORGE and Care4Rare Canada projects, the US NIH Undiagnosed Diseases Program, the EU Neuromics and ANDDIrare projects, as well as numerous independent clinicians and scientists. Though the majority of these records have associated exome data, most lack a molecular diagnosis. PhenomeCentral has already been used to identify causative mutations for several patients, and its ability to find matching patients and diagnose these diseases will grow with each additional patient that is entered.


Subject(s)
Genetic Predisposition to Disease/genetics , Information Dissemination/methods , Rare Diseases/genetics , Databases, Genetic , Genetic Variation , Genotype , Humans , Phenotype , Software , User-Computer Interface , Web Browser
14.
Hum Mutat ; 36(10): 922-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26255989

ABSTRACT

Despite the increasing prevalence of clinical sequencing, the difficulty of identifying additional affected families is a key obstacle to solving many rare diseases. There may only be a handful of similar patients worldwide, and their data may be stored in diverse clinical and research databases. Computational methods are necessary to enable finding similar patients across the growing number of patient repositories and registries. We present the Matchmaker Exchange Application Programming Interface (MME API), a protocol and data format for exchanging phenotype and genotype profiles to enable matchmaking among patient databases, facilitate the identification of additional cohorts, and increase the rate with which rare diseases can be researched and diagnosed. We designed the API to be straightforward and flexible in order to simplify its adoption on a large number of data types and workflows. We also provide a public test data set, curated from the literature, to facilitate implementation of the API and development of new matching algorithms. The initial version of the API has been successfully implemented by three members of the Matchmaker Exchange and was immediately able to reproduce previously identified matches and generate several new leads currently being validated. The API is available at https://github.com/ga4gh/mme-apis.


Subject(s)
Computational Biology/methods , Information Dissemination/methods , Rare Diseases/genetics , Algorithms , Databases, Genetic , Genetic Predisposition to Disease , Genotype , Humans , Phenotype , Rare Diseases/pathology , Web Browser
15.
Hum Mutat ; 36(10): 915-21, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26295439

ABSTRACT

There are few better examples of the need for data sharing than in the rare disease community, where patients, physicians, and researchers must search for "the needle in a haystack" to uncover rare, novel causes of disease within the genome. Impeding the pace of discovery has been the existence of many small siloed datasets within individual research or clinical laboratory databases and/or disease-specific organizations, hoping for serendipitous occasions when two distant investigators happen to learn they have a rare phenotype in common and can "match" these cases to build evidence for causality. However, serendipity has never proven to be a reliable or scalable approach in science. As such, the Matchmaker Exchange (MME) was launched to provide a robust and systematic approach to rare disease gene discovery through the creation of a federated network connecting databases of genotypes and rare phenotypes using a common application programming interface (API). The core building blocks of the MME have been defined and assembled. Three MME services have now been connected through the API and are available for community use. Additional databases that support internal matching are anticipated to join the MME network as it continues to grow.


Subject(s)
Genetic Predisposition to Disease/genetics , Information Dissemination/methods , Rare Diseases/genetics , Database Management Systems , Databases, Genetic , Genetic Association Studies , Humans , Software
17.
Bioinformatics ; 29(15): 1843-50, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23736532

ABSTRACT

MOTIVATION: The prioritization and identification of disease-causing mutations is one of the most significant challenges in medical genomics. Currently available methods address this problem for non-synonymous single nucleotide variants (SNVs) and variation in promoters/enhancers; however, recent research has implicated synonymous (silent) exonic mutations in a number of disorders. RESULTS: We have curated 33 such variants from literature and developed the Silent Variant Analyzer (SilVA), a machine-learning approach to separate these from among a large set of rare polymorphisms. We evaluate SilVA's performance on in silico 'infection' experiments, in which we implant known disease-causing mutations into a human genome, and show that for 15 of 33 disorders, we rank the implanted mutation among the top five most deleterious ones. Furthermore, we apply the SilVA method to two additional datasets: synonymous variants associated with Meckel syndrome, and a collection of silent variants clinically observed and stratified by a molecular diagnostics laboratory, and show that SilVA is able to accurately predict the harmfulness of silent variants in these datasets. AVAILABILITY: SilVA is open source and is freely available from the project website: http://compbio.cs.toronto.edu/silva CONTACT: silva-snv@cs.toronto.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Artificial Intelligence , Disease/genetics , Genome, Human , Mutation , Ciliary Motility Disorders/genetics , Computer Simulation , Encephalocele/genetics , Exons , Genomics/methods , Humans , Polycystic Kidney Diseases/genetics , Polymorphism, Genetic , Retinitis Pigmentosa
18.
Nat Methods ; 9(5): 473-6, 2012 Mar 18.
Article in English | MEDLINE | ID: mdl-22426492

ABSTRACT

We trained Segway, a dynamic Bayesian network method, simultaneously on chromatin data from multiple experiments, including positions of histone modifications, transcription-factor binding and open chromatin, all derived from a human chronic myeloid leukemia cell line. In an unsupervised fashion, we identified patterns associated with transcription start sites, gene ends, enhancers, transcriptional regulator CTCF-binding regions and repressed regions. Software and genome browser tracks are at http://noble.gs.washington.edu/proj/segway/.


Subject(s)
Chromatin/physiology , Genome, Human , Histones/physiology , Transcription Initiation Site , Bayes Theorem , Chromatin/genetics , Histones/genetics , Humans , K562 Cells , Molecular Sequence Data , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/physiology
19.
BMC Bioinformatics ; 12: 415, 2011 Oct 26.
Article in English | MEDLINE | ID: mdl-22029426

ABSTRACT

BACKGROUND: As genome-wide experiments and annotations become more prevalent, researchers increasingly require tools to help interpret data at this scale. Many functional genomics experiments involve partitioning the genome into labeled segments, such that segments sharing the same label exhibit one or more biochemical or functional traits. For example, a collection of ChlP-seq experiments yields a compendium of peaks, each labeled with one or more associated DNA-binding proteins. Similarly, manually or automatically generated annotations of functional genomic elements, including cis-regulatory modules and protein-coding or RNA genes, can also be summarized as genomic segmentations. RESULTS: We present a software toolkit called Segtools that simplifies and automates the exploration of genomic segmentations. The software operates as a series of interacting tools, each of which provides one mode of summarization. These various tools can be pipelined and summarized in a single HTML page. We describe the Segtools toolkit and demonstrate its use in interpreting a collection of human histone modification data sets and Plasmodium falciparum local chromatin structure data sets. CONCLUSIONS: Segtools provides a convenient, powerful means of interpreting a genomic segmentation.


Subject(s)
Genome, Human , Plasmodium falciparum/genetics , Software , Gene Expression , Genomics , Histone Code , Histones/metabolism , Humans
20.
Bioinformatics ; 26(11): 1458-9, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20435580

ABSTRACT

SUMMARY: We present a format for efficient storage of multiple tracks of numeric data anchored to a genome. The format allows fast random access to hundreds of gigabytes of data, while retaining a small disk space footprint. We have also developed utilities to load data into this format. We show that retrieving data from this format is more than 2900 times faster than a naive approach using wiggle files. AVAILABILITY AND IMPLEMENTATION: Reference implementation in Python and C components available at http://noble.gs.washington.edu/proj/genomedata/ under the GNU General Public License.


Subject(s)
Genome , Genomics/methods , Databases, Genetic , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...