Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31448244

ABSTRACT

The balance between the host and microbe is pivotal for oral health. A dysbiotic oral microbiome and the subsequent host inflammatory response are causes for the most common dental problems, such as periodontitis and caries. Classically, toll-like receptors (TLRs) are known to play important roles in host-microbe interactions by recognizing pathogens and activating innate immunity. However, emerging evidence suggests that commensals may also exploit TLRs to induce tolerance to the benefit of the host, especially in oral mucosa which is heavily colonized by abundant microbes. How TLRs and downstream signaling events are affected by different oral microbial communities to regulate host responses is still unknown. To compare such human host-microbe interactions in vitro, we exposed a reconstructed human gingiva (RHG) to commensal or pathogenic (gingivitis, cariogenic) multi-species oral biofilms cultured from human saliva. These biofilms contain in vivo like phylogenic numbers and typical bacterial genera. After 24 h biofilm exposure, TLR protein and gene expression of 84 TLR pathway related genes were investigated. Commensal and pathogenic biofilms differentially regulated TLR protein expression. Commensal biofilm up-regulated the transcription of a large group of key genes, which are involved in TLR signaling, including TLR7, the MyD88-dependent pathway (CD14, MyD88, TIRAP, TRAF6, IRAKs), MyD88-independent pathway (TAB1, TBK1, IRF3), and their downstream signaling pathways (NF-κB and MAPK pathways). In comparison, gingivitis biofilm activated fewer genes (e.g., TLR4) and cariogenic biofilm suppressed CD14, IRAK4, and IRF3 transcription. Fluorescence in situ hybridization staining showed the rRNA of the topically applied and invaded bacteria, and histology showed that the biofilms had no obvious detrimental effect on RHG morphology. These results show an important role of TLR signaling pathways in regulating host-microbe interactions: when a sterile gingival tissue is exposed to commensals, a strong immune activation occurs which may prime the host against potential challenges in order to maintain oral host-microbe homeostasis. In contrast, pathogenic biofilms stimulate a weaker immune response which might facilitate immune evasion thus enabling pathogens to penetrate undetected into the tissues.


Subject(s)
Biofilms , Gingiva/metabolism , Gingiva/microbiology , Microbiota , Signal Transduction , Toll-Like Receptors/metabolism , Biomarkers , Cell Line , Gene Expression , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Models, Biological , Mouth Mucosa/metabolism , Mouth Mucosa/microbiology , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptors/genetics
2.
J Tissue Eng Regen Med ; 13(6): 1079-1092, 2019 06.
Article in English | MEDLINE | ID: mdl-30968584

ABSTRACT

Despite continuous exposure to environmental pathogens, injured mucosa within the oral cavity heals faster and almost scar free compared with skin. Saliva is thought to be one of the main contributing factors. Saliva may possibly also stimulate skin wound healing. If so, it would provide a novel therapy for treating skin wounds, for example, burns. This study aims to investigate the therapeutic wound healing potential of human saliva in vitro. Human saliva from healthy volunteers was filter sterilized before use. Two different in vitro wound models were investigated: (a) open wounds represented by 2D skin and gingiva cultures were used to assess fibroblast and keratinocyte migration and proliferation and (b) blister wounds represented by introducing freeze blisters into organotypic reconstructed human skin and gingiva. Re-epithelialization and differentiation (keratin K10, K13, K17 expression) under the blister and inflammatory wound healing mediator secretion was assessed. Saliva-stimulated migration of skin and oral mucosa fibroblasts and keratinocytes, but only fibroblast proliferation. Topical saliva application to the blister wound on reconstructed skin did not stimulate re-epithelization because the blister wound contained a dense impenetrable dead epidermal layer. Saliva did promote an innate inflammatory response (increased CCL20, IL-6, and CXCL-8 secretion) when applied topically to the flanking viable areas of both wounded reconstructed human skin and oral mucosa without altering the skin specific keratin differentiation profile. Our results show that human saliva can stimulate oral and skin wound closure and an inflammatory response. Saliva is therefore a potential novel therapeutic for treating open skin wounds.


Subject(s)
Saliva/metabolism , Skin/metabolism , Wound Healing , Blister/pathology , Cell Proliferation , Cytokines/metabolism , Epithelium , Fibroblasts , Humans , Inflammation Mediators/metabolism , Keratinocytes
3.
Sci Rep ; 8(1): 16061, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375445

ABSTRACT

Since the oral mucosa is continuously exposed to abundant microbes, one of its most important defense features is a highly proliferative, thick, stratified epithelium. The cellular mechanisms responsible for this are still unknown. The aim of this study was to determine whether multi-species oral biofilm contribute to the extensive stratification and primed antimicrobial defense in epithelium. Two in vitro models were used: 3D reconstructed human gingiva (RHG) and oral bacteria representative of multi-species commensal biofilm. The organotypic RHG consists of a reconstructed stratified gingiva epithelium on a gingiva fibroblast populated hydrogel (lamina propria). Biofilm was cultured from healthy human saliva, and consists of typical commensal genera Granulicatella and major oral microbiota genera Veillonella and Streptococcus. Biofilm was applied topically to RHG and host-microbiome interactions were studied over 7 days. Compared to unexposed RHG, biofilm exposed RHG showed increased epithelial thickness, more organized stratification and increased keratinocyte proliferation. Furthermore biofilm exposure increased production of RHG anti-microbial proteins Elafin, HBD2 and HBD3 but not HBD1, adrenomedullin or cathelicidin LL-37. Inflammatory and antimicrobial cytokine secretion (IL-6, CXCL8, CXCL1, CCL20) showed an immediate and sustained increase. In conclusion, exposure of RHG to commensal oral biofilm actively contributes to RHG epithelial barrier function.


Subject(s)
Biofilms/growth & development , Gingiva/growth & development , Host-Pathogen Interactions/genetics , Microbiota/genetics , Coculture Techniques , Elafin/genetics , Epithelial Cells/microbiology , Epithelial Cells/pathology , Fibroblasts/microbiology , Gene Expression Regulation/genetics , Gingiva/microbiology , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Mouth Mucosa/microbiology , Primary Cell Culture/methods , Saliva/microbiology , Streptococcus/growth & development , Streptococcus/pathogenicity , Veillonella/growth & development , Veillonella/pathogenicity , beta-Defensins/genetics
4.
J Cell Physiol ; 232(11): 2996-3005, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28387445

ABSTRACT

The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL-6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP-1 secretion was reduced by CCL15/CCR3. In conclusion, this in-vitro study identifies chemokine receptor-ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL-6 and HGF and reducing the secretion of TIMP-1.


Subject(s)
Chemokines, CC/pharmacology , Fibroblasts/drug effects , Gingiva/drug effects , Receptors, CCR3/agonists , Receptors, CCR4/agonists , Wound Healing/drug effects , Cell Line, Transformed , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Fibroblasts/pathology , Gingiva/metabolism , Gingiva/pathology , Hepatocyte Growth Factor/metabolism , Humans , Interleukin-6/metabolism , Ligands , Receptors, CCR3/metabolism , Receptors, CCR4/metabolism , Signal Transduction/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism
5.
Tissue Eng Part C Methods ; 22(8): 781-91, 2016 08.
Article in English | MEDLINE | ID: mdl-27406216

ABSTRACT

Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and CXCL8) was observed followed by complete reepithelialization. Seven days after wounding, tissue integrity, metabolic activity, and cytokine levels had returned to the prewounded state. In conclusion, immortalized human gingiva KC and fibroblasts can be used to make physiologically relevant GE, which resemble either the healthy gingiva or a neoplastic disease model. These organotypic models will provide valuable tools to investigate oral mucosa biology and can also be used as an animal alternative for drug targeting, vaccination studies, microbial biofilm studies, and testing new therapeutics.


Subject(s)
Epithelial Cells/cytology , Fibroblasts/cytology , Gingiva/cytology , Keratinocytes/cytology , Basement Membrane , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Epithelial Cells/metabolism , Fibroblasts/metabolism , Gingiva/metabolism , Humans , Inflammation Mediators/metabolism , Keratinocytes/metabolism
6.
J Immunol Res ; 2015: 627125, 2015.
Article in English | MEDLINE | ID: mdl-26539556

ABSTRACT

Both oral mucosa and skin have the capacity to maintain immune homeostasis or regulate immune responses upon environmental assault. Whereas much is known about key innate immune events in skin, little is known about oral mucosa. Comparative studies are limited due to the scarce supply of oral mucosa for ex vivo studies. Therefore, we used organotypic tissue equivalents (reconstructed epithelium on fibroblast-populated collagen hydrogel) to study cross talk between cells. Oral mucosa and skin equivalents were compared regarding secretion of cytokines and chemokines involved in LC migration and general inflammation. Basal secretion, representative of homeostasis, and also secretion after stimulation with TNFα, an allergen (cinnamaldehyde), or an irritant (SDS) were assessed. We found that proinflammatory IL-18 and chemokines CCL2, CCL20, and CXCL12, all involved in LC migration, were predominantly secreted by skin as compared to gingiva. Furthermore, CCL27 was predominantly secreted by skin whereas CCL28 was predominantly secreted by gingiva. In contrast, general inflammatory cytokines IL-6 and CXCL8 were secreted similarly by skin and gingiva. These results indicate that the cytokines and chemokines triggering innate immunity and LC migration are different in skin and gingiva. This differential regulation should be figured into novel therapy or vaccination strategies in the context of skin versus mucosa.


Subject(s)
Chemokines/metabolism , Cytokines/metabolism , Gingiva/immunology , Langerhans Cells/immunology , Skin/immunology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Cell Movement/immunology , Cells, Cultured , Chemokine CCL27/metabolism , Chemokines, CC/metabolism , Epithelial Cells/drug effects , Fibroblasts/drug effects , Humans , Interleukin-18/metabolism , Interleukin-1alpha/pharmacology , Organ Culture Techniques/methods , Skin/cytology , Sodium Dodecyl Sulfate/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
7.
Toxicol In Vitro ; 30(1 Pt B): 325-30, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26456670

ABSTRACT

Gold, nickel, copper and mercury, i.e. four metals frequently used in dental applications, were explored for their capacity to induce innate immune activation in keratinocytes (KC). Due to their anatomical location the latter epithelial cells are key in primary local irritative responses of skin and mucosa. Fresh foreskin-derived keratinocytes and skin and gingiva KC cell lines were studied for IL-8 release as a most sensitive parameter for NF-kB activation. First, we verified that viral-defense mediating TLR3 is a key innate immune receptor in both skin- and mucosa derived keratinocytes. Second, we found that, in line with our earlier finding that ionized gold can mimic viral dsRNA in triggering TLR3, gold is very effective in KC activation. It would appear that epithelial TLR3 can play a key role in both skin- and mucosa localized irritation reactivities to gold. Subsequently we found that not only gold, but also nickel, copper and mercury salts can activate innate immune reactivity in keratinocytes, although the pathways involved remain unclear. Although current alloys have been optimized for minimal leakage of metal ions, secondary factors such as mechanical friction and acidity may still facilitate such leakage. Subsequently, these metal ions may create local irritation, itching and swelling by triggering innate immune reactions, potentially also facilitating the development of metal specific adaptive immunity.


Subject(s)
Dental Materials/toxicity , Immunity, Innate/drug effects , Keratinocytes/immunology , Metals/toxicity , Cells, Cultured , Humans , Toll-Like Receptor 3/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...