Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(42): e2303690120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37819980

ABSTRACT

The modification of nucleocytoplasmic proteins by O-linked N-acetylglucosamine (O-GlcNAc) is an important regulator of cell physiology. O-GlcNAc is installed on over a thousand proteins by just one enzyme, O-GlcNAc transferase (OGT). How OGT is regulated is therefore a topic of interest. To gain insight into these questions, we used OGT to perform phage display selection from an unbiased library of ~109 peptides of 15 amino acids in length. Following rounds of selection and deep mutational panning, we identified a high-fidelity peptide consensus sequence, [Y/F]-x-P-x-Y-x-[I/M/F], that drives peptide binding to OGT. Peptides containing this sequence bind to OGT in the high nanomolar to low micromolar range and inhibit OGT in a noncompetitive manner with low micromolar potencies. X-ray structural analyses of OGT in complex with a peptide containing this motif surprisingly revealed binding to an exosite proximal to the active site of OGT. This structure defines the detailed molecular basis driving peptide binding and explains the need for specific residues within the sequence motif. Analysis of the human proteome revealed this motif within 52 nuclear and cytoplasmic proteins. Collectively, these data suggest a mode of regulation of OGT by which polypeptides can bind to this exosite to cause allosteric inhibition of OGT through steric occlusion of its active site. We expect that these insights will drive improved understanding of the regulation of OGT within cells and enable the development of new chemical tools to exert fine control over OGT activity.


Subject(s)
Bacteriophages , Peptides , Humans , Amino Acid Sequence , N-Acetylglucosaminyltransferases/metabolism , Mutation , Bacteriophages/metabolism
2.
Angew Chem Int Ed Engl ; 62(5): e202215671, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36460613

ABSTRACT

Glycosyltransferases are a superfamily of enzymes that are notoriously difficult to inhibit. Here we apply an mRNA display technology integrated with genetic code reprogramming, referred to as the RaPID (random non-standard peptides integrated discovery) system, to identify macrocyclic peptides with high binding affinities for O-GlcNAc transferase (OGT). These macrocycles inhibit OGT activity through an allosteric mechanism that is driven by their binding to the tetratricopeptide repeats of OGT. Saturation mutagenesis in a maturation screen using 39 amino acids, including 22 non-canonical residues, led to an improved unnatural macrocycle that is ≈40 times more potent than the parent compound (Ki app =1.5 nM). Subsequent derivatization delivered a biotinylated derivative that enabled one-step affinity purification of OGT from complex samples. The high potency and novel mechanism of action of these OGT ligands should enable new approaches to elucidate the specificity and regulation of OGT.


Subject(s)
N-Acetylglucosaminyltransferases , Peptides , Peptides/genetics , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Mutagenesis
3.
J Am Chem Soc ; 144(2): 832-844, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34985906

ABSTRACT

Owing to its roles in human health and disease, the modification of nuclear, cytoplasmic, and mitochondrial proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) has emerged as a topic of great interest. Despite the presence of O-GlcNAc on hundreds of proteins within cells, only two enzymes regulate this modification. One of these enzymes is O-GlcNAcase (OGA), a dimeric glycoside hydrolase that has a deep active site cleft in which diverse substrates are accommodated. Chemical tools to control OGA are emerging as essential resources for helping to decode the biochemical and cellular functions of the O-GlcNAc pathway. Here we describe rationally designed bicyclic thiazolidine inhibitors that exhibit superb selectivity and picomolar inhibition of human OGA. Structures of these inhibitors in complex with human OGA reveal the basis for their exceptional potency and show that they extend out of the enzyme active site cleft. Leveraging this structure, we create a high affinity chemoproteomic probe that enables simple one-step purification of endogenous OGA from brain and targeted proteomic mapping of its post-translational modifications. These data uncover a range of new modifications, including some that are less-known, such as O-ubiquitination and N-formylation. We expect that these inhibitors and chemoproteomics probes will prove useful as fundamental tools to decipher the mechanisms by which OGA is regulated and directed to its diverse cellular substrates. Moreover, the inhibitors and structures described here lay out a blueprint that will enable the creation of chemical probes and tools to interrogate OGA and other carbohydrate active enzymes.


Subject(s)
Antigens, Neoplasm/metabolism , Bridged Bicyclo Compounds/chemistry , Enzyme Inhibitors/chemistry , Histone Acetyltransferases/metabolism , Hyaluronoglucosaminidase/metabolism , Amino Acid Sequence , Brain/metabolism , Bridged Bicyclo Compounds/metabolism , Catalytic Domain , Chromatography, High Pressure Liquid , Enzyme Inhibitors/metabolism , Histone Acetyltransferases/antagonists & inhibitors , Humans , Hyaluronoglucosaminidase/antagonists & inhibitors , Mass Spectrometry , Peptides/analysis , Peptides/chemistry , Protein Processing, Post-Translational , Proteomics/methods , Structure-Activity Relationship , Thiazolidines/chemistry , Thiazolidines/metabolism , beta-Hexosaminidase alpha Chain/antagonists & inhibitors , beta-Hexosaminidase alpha Chain/metabolism
4.
Nat Commun ; 12(1): 6508, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764280

ABSTRACT

The O-linked ß-N-acetylglucosamine modification is a core signalling mechanism, with erroneous patterns leading to cancer and neurodegeneration. Although thousands of proteins are subject to this modification, only a single essential glycosyltransferase catalyses its installation, the O-GlcNAc transferase, OGT. Previous studies have provided truncated structures of OGT through X-ray crystallography, but the full-length protein has never been observed. Here, we report a 5.3 Å cryo-EM model of OGT. We show OGT is a dimer, providing a structural basis for how some X-linked intellectual disability mutations at the interface may contribute to disease. We observe that the catalytic section of OGT abuts a 13.5 tetratricopeptide repeat unit region and find the relative positioning of these sections deviate from the previously proposed, X-ray crystallography-based model. We also note that OGT exhibits considerable heterogeneity in tetratricopeptide repeat units N-terminal to the dimer interface with repercussions for how OGT binds protein ligands and partners.


Subject(s)
Amino Acids/metabolism , Chromium/metabolism , Cryoelectron Microscopy/methods , Nicotinic Acids/metabolism , Amino Acids/chemistry , Chromium/chemistry , Crystallography, X-Ray , Glycomics , Mutation/genetics , Nicotinic Acids/chemistry , Protein Structure, Secondary
5.
Angew Chem Int Ed Engl ; 59(24): 9601-9609, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32092778

ABSTRACT

Glycosyltransferases carry out important cellular functions in species ranging from bacteria to humans. Despite their essential roles in biology, simple and robust activity assays that can be easily applied to high-throughput screening for inhibitors of these enzymes have been challenging to develop. Herein, we report a bead-based strategy to measure the group-transfer activity of glycosyltransferases sensitively using simple fluorescence measurements, without the need for coupled enzymes or secondary reactions. We validate the performance and accuracy of the assay using O-GlcNAc transferase (OGT) as a model system through detailed Michaelis-Menten kinetic analysis of various substrates and inhibitors. Optimization of this assay and application to high-throughput screening enabled screening for inhibitors of OGT, leading to a novel inhibitory scaffold. We believe this assay will prove valuable not only for the study of OGT, but also more widely as a general approach for the screening of glycosyltransferases and other group-transfer enzymes.


Subject(s)
Enzyme Assays/methods , N-Acetylglucosaminyltransferases/metabolism , Spectrometry, Fluorescence/methods , Glycosylation , Kinetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...