Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 22(19): 1939-1946, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34291548

ABSTRACT

The antiphase character of the PHIP associated signals after a hydrogenation reaction is particularly sensitive to line broadening introduced by magnetic field inhomogeneities and interferences by the presence of resonance lines steaming from a large amount of thermally polarized spins. These obstacles impose a limitation in the detection of reaction products as well as in the experimental setups. A simple way to overcome these impediments consists of acquiring the signal with a train of refocusing pulses instead of a single r.f. pulse. We present here a number of examples where this multipulse acquisition, denominated PhD-PHIP, displays its potentiality in improving the information related to hyperpolarized spins performed in a sample, where the former parahydrogen nuclei are part of a complex J-coupling network.

2.
J Magn Reson ; 323: 106894, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33387958

ABSTRACT

A new pulse sequence aimed to filter out NMR signals coming from thermally polarized protons in PHIP experiments based on the OPSY pulse sequence (Only Parahydrogen SpectroscopY) is presented. In analogy to OPSY, which removes thermal polarization by using a pair of magnetic field gradient pulses with an intensity ratio 1:2 and equal duration, the same effect can be achieved using inhomogeneous radiofrequency fields. The spatial dependence of the radiofrequency field is used to control the Hamiltonian, which results in an effective suppression of thermal contributions in the NMR signal, while PHIP originated signals remain unmodified. A theoretical model for the radiofrequency encoded only parahydrogen (REOPSY) sequence is presented along with an experimental implementation on a birdcage coil in a 7 T magnetic field. The control level achieved by this strategy allows the inclusion of a long train of refocusing pulses. Therefore, the new sequence can be combined with the parahydrogen discriminated PHIP (PhD-PHIP) pulse sequence as a detection block to improve sensitivity and resolution in a single-scan experiment. Experiments with REOPSY and REOPSY+PhD-PHIP are presented in thermally and hyperpolarized samples.

3.
J Magn Reson ; 320: 106833, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33032245

ABSTRACT

DOSY is a powerful spectroscopic NMR technique that resolves components in mixtures through the evaluation of different diffusion coefficients. The application of DOSY to dilute mixtures is hampered by the low signal to noise ratios (SNR), leading to long acquisition times. The use of PHIP may resolve this issue as long as reproducible signals are obtained in order to perform 2D experiments. Here we show that the use of hollow membranes and adequate gas flow produce constant polarization for a time-span that enables the acquisition of 2D experiments. A pressure gradient is evidenced by the presence of convection, which is accounted for by using a DPGSE sequence. The influence of J-coupling evolution during the sequence is studied both numerically and experimentally, to determine the optimum echo-time. The applicability of the method for samples with poor SNR is explored by setting the reaction rate to achieve a low intensity of polarized signals.

4.
J Magn Reson ; 299: 28-32, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30554041

ABSTRACT

Despite the large degree of polarization in PHIP experiments compared to the Boltzmann factor, the presence of a large amount of non-reacted molecules with thermal polarization is an important obstacle when dealing with very diluted samples. The feasibility of enhancing both sensitivity and resolution in a single experiment by combining two well established pulse sequences, OPSY and PHD-PHIP is presented. OPSY is used as a block for filtering the signals originated from thermally polarized protons. PhD-PHIP, on the other hand, is used as an acquisition block, increasing the resolution and further improving the sensitivity by preventing signal canceling in the presence of magnetic field inhomogeneities. Experiments in a complex sample with very low hyperpolarization levels are presented showing the excellent performance of the method.

5.
J Magn Reson ; 289: 55-62, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29471276

ABSTRACT

We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yyyy‾ or xxxx‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...