Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1278990, 2023.
Article in English | MEDLINE | ID: mdl-37941658

ABSTRACT

Introduction: Arbuscular mycorrhizal fungi (AMF) belong to the Glomeromycota clade and can form root symbioses with 80% of Angiosperms, including crops species such as wheat, maize and rice. By increasing nutrient availability, uptake and soil anchoring of plants, AMF can improve plant's growth and tolerance to abiotic stresses. AMF can also reduce symptoms and pathogen load on infected plants, both locally and systemically, through a phenomenon called mycorrhiza induced resistance (MIR). There is scarce information on rice mycorrhization, despite the high potential of this symbiosis in a context of sustainable water management in rice production systems. Methods: We studied the symbiotic compatibility (global mycorrhization & arbuscules intensity) and MIR phenotypes between six rice cultivars from two subspecies (indica: IR64 & Phka Rumduol; japonica: Nipponbare, Kitaake, Azucena & Zhonghua 11) and three AMF genotypes (Funneliformis mosseae FR140 (FM), Rhizophagus irregularis DAOM197198 (RIR) & R. intraradices FR121 (RIN)). The impact of mycorrhization on rice growth and defence response to Xanthomonas oryzae pv oryzae (Xoo) infection was recorded via both phenotypic indexes and rice marker gene expression studies. Results: All three AMF genotypes colonise the roots of all rice varieties, with clear differences in efficiency depending on the combination under study (from 27% to 84% for Phka Rumduol-RIN and Nipponbare-RIR combinations, respectively). Mycorrhization significantly (α=0.05) induced negative to beneficial effects on rice growth (impact on dry weight ranging from -21% to 227% on Azucena-FM and Kitaake-RIN combinations, respectively), and neutral to beneficial effects on the extent of Xoo symptoms on leaves (except for Azucena-RIN combination which showed a 68% increase of chlorosis). R. irregularis DAOM197198 was the most compatible AMF partner of rice, with high root colonisation intensity (84% of Nipponbare's roots hyphal colonisation), beneficial effects on rice growth (dry weight +28% (IR64) to +178% (Kitaake)) and decrease of Xoo-induced symptoms (-6% (Nipponbare) to -27% (IR64)). Transcriptomic analyses by RT-qPCR on leaves of two rice cultivars contrasting in their association with AMF show two different patterns of response on several physiological marker genes. Discussion: Overall, the symbiotic compatibility between rice cultivars and AMF demonstrates adequate colonization, effectively restricting the nutrient starvation response and mitigating symptoms of phytopathogenic infection.

2.
Appl Environ Microbiol ; 88(14): e0064222, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35862731

ABSTRACT

Burkholderia vietnamiensis LMG10929 and Paraburkholderia kururiensis M130 are bacterial rice growth-promoting models. Besides this common ecological niche, species of the Burkholderia genus are also found as opportunistic human pathogens, while Paraburkholderia species are mostly environmental and plant associated. In this study, we compared the genetic strategies used by B. vietnamiensis and P. kururiensis to colonize two subspecies of their common host, Oryza sativa subsp. japonica (cv. Nipponbare) and O. sativa subsp. indica (cv. IR64). We used high-throughput screening of transposon insertional mutant libraries (Tn-seq) to infer which genetic elements have the highest fitness contribution during root surface colonization at 7 days postinoculation. Overall, we detected twice more genes in B. vietnamiensis involved in rice root colonization than in P. kururiensis, including genes contributing to the tolerance of plant defenses, which suggests a stronger adverse reaction of rice toward B. vietnamiensis than toward P. kururiensis. For both strains, the bacterial fitness depends on a higher number of genes when colonizing indica rice compared to japonica. These divergences in host pressure on bacterial adaptation could be partly linked to the cultivars' differences in nitrogen assimilation. We detected several functions commonly enhancing root colonization in both bacterial strains, e.g., Entner-Doudoroff (ED) glycolysis. Less frequently and more strain specifically, we detected functions limiting root colonization such as biofilm production in B. vietnamiensis and quorum sensing in P. kururiensis. The involvement of genes identified through the Tn-seq procedure as contributing to root colonization, i.e., ED pathway, c-di-GMP cycling, and cobalamin synthesis, was validated by directed mutagenesis and competition with wild-type (WT) strains in rice root colonization assays. IMPORTANCEBurkholderiaceae are frequent and abundant colonizers of the rice rhizosphere and interesting candidates to investigate for growth promotion. Species of Paraburkholderia have repeatedly been described to stimulate plant growth. However, the closely related Burkholderia genus includes both beneficial and phytopathogenic species, as well as species able to colonize animal hosts and cause disease in humans. We need to understand to what extent the bacterial strategies used for the different biotic interactions differ depending on the host and if strains with agricultural potential could also pose a threat toward other plant hosts or humans. To start answering these questions, we used in this study transposon sequencing to identify genetic traits in Burkholderia vietnamiensis and Paraburkholderia kururiensis that contribute to the colonization of two different rice varieties. Our results revealed large differences in the fitness gene sets between the two strains and between the host plants, suggesting a strong specificity in each bacterium-plant interaction.


Subject(s)
Burkholderia cepacia complex , Burkholderia , Burkholderiaceae , Oryza , Animals , Burkholderia/metabolism , Burkholderia cepacia complex/genetics , Burkholderiaceae/genetics , Humans , Mutagenesis, Insertional , Oryza/microbiology , Plants/genetics
3.
Front Microbiol ; 12: 761215, 2021.
Article in English | MEDLINE | ID: mdl-34745070

ABSTRACT

Burkholderia sensu lato species are prominent for their diversity of hosts. The type 3 secretion system (T3SS) is a major mechanism impacting the interactions between bacteria and eukaryotic hosts. Besides the human pathogenic species Burkholderia pseudomallei and closely affiliated species, the T3SS has received little attention in this genus as in taxonomically and evolutionary close genera Paraburkholderia, Caballeronia, Trinickia, and Mycetohabitans. We proceeded to identify and characterize the diversity of T3SS types using the genomic data from a subset of 145 strains representative of the species diversity found in the Burkholderia s.l. group. Through an analysis of their phylogenetic distribution, we identified two new T3SS types with an atypical chromosomal organization and which we propose to name BCI (Burkholderia cepacia complex Injectisome) and PSI (Paraburkholderia Short Injectisome). BCI is the dominant T3SS type found in Burkholderia sensu stricto (s.s.) species and PSI is mostly restricted to the Paraburkholderia genus. By correlating their distribution with the ecology of their strains of origin, we propose a role in plant interaction for these T3SS types. Experimentally, we demonstrated that a BCI deficient B. vietnamiensis LMG10929 mutant was strongly affected in its rice colonization capacity.

4.
Biomolecules ; 11(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34827590

ABSTRACT

Many Bradyrhizobium strains are able to establish a Nod factor-independent symbiosis with the leguminous plant Aeschynomene indica by the use of a type III secretion system (T3SS). Recently, an important advance in the understanding of the molecular factors supporting this symbiosis has been achieved by the in silico identification and functional characterization of 27 putative T3SS effectors (T3Es) of Bradyrhizobium vignae ORS3257. In the present study, we experimentally extend this catalog of T3Es by using a multi-omics approach. Transcriptome analysis under non-inducing and inducing conditions in the ORS3257 wild-type strain and the ttsI mutant revealed that the expression of 18 out of the 27 putative effectors previously identified, is under the control of TtsI, the global transcriptional regulator of T3SS and T3Es. Quantitative shotgun proteome analysis of culture supernatant in the wild type and T3SS mutant strains confirmed that 15 of the previously determined candidate T3Es are secreted by the T3SS. Moreover, the combined approaches identified nine additional putative T3Es and one of them was experimentally validated as a novel effector. Our study underscores the power of combined proteome and transcriptome analyses to complement in silico predictions and produce nearly complete effector catalogs. The establishment of the ORS3257 effectome will form the basis for a full appraisal of the symbiotic properties of this strain during its interaction with various host legumes via different processes.


Subject(s)
Bradyrhizobium , Symbiosis , Type III Secretion Systems/metabolism
5.
mBio ; 12(4): e0089521, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34311575

ABSTRACT

Legumes of the Medicago genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the nodule-specific cysteine-rich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing. Moreover, the bacterial broad-specificity peptide uptake transporter BacA and exopolysaccharides contribute to protect the endosymbionts against the toxic activity of NCRs. Here, we show that other S. meliloti functions participate in the protection of the endosymbionts; these include an additional broad-specificity peptide uptake transporter encoded by the yejABEF genes and lipopolysaccharide modifications mediated by lpsB and lpxXL, as well as rpoH1, encoding a stress sigma factor. Strains with mutations in these genes show a strain-specific increased sensitivity profile against a panel of NCRs and form nodules in which bacteroid differentiation is affected. The lpsB mutant nodule bacteria do not differentiate, the lpxXL and rpoH1 mutants form some seemingly fully differentiated bacteroids, although most of the nodule bacteria are undifferentiated, while the yejABEF mutants form hypertrophied but nitrogen-fixing bacteroids. The nodule bacteria of all the mutants have a strongly enhanced membrane permeability, which is dependent on the transport of NCRs to the endosymbionts. Our results suggest that S. meliloti relies on a suite of functions, including peptide transporters, the bacterial envelope structures, and stress response regulators, to resist the aggressive assault of NCR peptides in the nodule cells. IMPORTANCE The nitrogen-fixing symbiosis of legumes with rhizobium bacteria has a predominant ecological role in the nitrogen cycle and has the potential to provide the nitrogen required for plant growth in agriculture. The host plants allow the rhizobia to colonize specific symbiotic organs, the nodules, in large numbers in order to produce sufficient reduced nitrogen for the plants' needs. Some legumes, including Medicago spp., produce massively antimicrobial peptides to keep this large bacterial population in check. These peptides, known as NCRs, have the potential to kill the rhizobia, but in nodules, they rather inhibit the division of the bacteria, which maintain a high nitrogen-fixing activity. In this study, we show that the tempering of the antimicrobial activity of the NCR peptides in the Medicago symbiont Sinorhizobium meliloti is multifactorial and requires the YejABEF peptide transporter, the lipopolysaccharide outer membrane, and the stress response regulator RpoH1.


Subject(s)
Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology , Drug Resistance, Bacterial , Medicago truncatula/chemistry , Sinorhizobium meliloti/drug effects , Sinorhizobium meliloti/metabolism , Antimicrobial Peptides/genetics , Medicago truncatula/microbiology , Nitrogen Fixation , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/genetics , Symbiosis
6.
Proc Natl Acad Sci U S A ; 116(43): 21758-21768, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591240

ABSTRACT

Several Bradyrhizobium species nodulate the leguminous plant Aeschynomene indica in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in Bradyrhizobium strain ORS3257. The mutation of nopAO increased nodulation and nitrogenase activity, whereas mutation of 5 other effector genes led to various symbiotic defects. The nopM1 and nopP1 mutants induced a reduced number of nodules, some of which displayed large necrotic zones. The nopT and nopAB mutants induced uninfected nodules, and a mutant in a yet-undescribed effector gene lost the capacity for nodule formation. This effector gene, widely conserved among bradyrhizobia, was named ernA for "effector required for nodulation-A." Remarkably, expressing ernA in a strain unable to nodulate A. indica conferred nodulation ability. Upon its delivery by Pseudomonas fluorescens into plant cells, ErnA was specifically targeted to the nucleus, and a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy approach supports the possibility that ErnA binds nucleic acids in the plant nuclei. Ectopic expression of ernA in A. indica roots activated organogenesis of root- and nodule-like structures. Collectively, this study unravels the symbiotic functions of rhizobial type III effectors playing distinct and complementary roles in suppression of host immune functions, infection, and nodule organogenesis, and suggests that ErnA triggers organ development in plants by a mechanism that remains to be elucidated.


Subject(s)
Bradyrhizobium/metabolism , Fabaceae/microbiology , Organogenesis, Plant/physiology , Plant Root Nodulation/physiology , Root Nodules, Plant/metabolism , Bradyrhizobium/genetics , Nitrogenase/genetics , Nitrogenase/metabolism , Organogenesis, Plant/genetics , Plant Roots/metabolism , Pseudomonas fluorescens/genetics , Symbiosis/physiology , Type III Secretion Systems/metabolism
7.
Nat Rev Microbiol ; 16(5): 304-315, 2018 05.
Article in English | MEDLINE | ID: mdl-29456243

ABSTRACT

Lipid research represents a frontier for microbiology, as showcased by hopanoid lipids. Hopanoids, which resemble sterols and are found in the membranes of diverse bacteria, have left an extensive molecular fossil record. They were first discovered by petroleum geologists. Today, hopanoid-producing bacteria remain abundant in various ecosystems, such as the rhizosphere. Recently, great progress has been made in our understanding of hopanoid biosynthesis, facilitated in part by technical advances in lipid identification and quantification. A variety of genetically tractable, hopanoid-producing bacteria have been cultured, and tools to manipulate hopanoid biosynthesis and detect hopanoids are improving. However, we still have much to learn regarding how hopanoid production is regulated, how hopanoids act biophysically and biochemically, and how their production affects bacterial interactions with other organisms, such as plants. The study of hopanoids thus offers rich opportunities for discovery.


Subject(s)
Bacteria/metabolism , Cell Membrane/physiology , Lipid Metabolism/physiology , Lipids/classification , Plants/microbiology , Bacteria/classification , Bacteria/genetics
8.
Front Microbiol ; 8: 1821, 2017.
Article in English | MEDLINE | ID: mdl-28983292

ABSTRACT

In rhizobium strains, the lipid A is modified by the addition of a very long-chain fatty acid (VLCFA) shown to play an important role in rigidification of the outer membrane, thereby facilitating their dual life cycle, outside and inside the plant. In Bradyrhizobium strains, the lipid A is more complex with the presence of at least two VLCFAs, one covalently linked to a hopanoid molecule, but the importance of these modifications is not well-understood. In this study, we identified a cluster of VLCFA genes in the photosynthetic Bradyrhizobium strain ORS278, which nodulates Aeschynomene plants in a Nod factor-independent process. We tried to mutate the different genes of the VLCFA gene cluster to prevent the synthesis of the VLCFAs, but only one mutant in the lpxXL gene encoding an acyltransferase was obtained. Structural analysis of the lipid A showed that LpxXL is involved in the transfer of the C26:25OH VLCFA to the lipid A but not in the one of the C30:29OH VLCFA which harbors the hopanoid molecule. Despite maintaining the second VLCFA, the ability of the mutant to cope with various stresses (low pH, high temperature, high osmolarity, and antimicrobial peptides) and to establish an efficient nitrogen-fixing symbiosis was drastically reduced. In parallel, we investigated whether the BRADO0045 gene, which encodes a putative acyltransferase displaying a weak identity with the apo-lipoprotein N-acyltransferase Lnt, could be involved in the transfer of the C30:29OH VLCFA to the lipid A. Although the mutant exhibited phenotypes similar to the lpxXL mutant, no difference in the lipid A structure was observed from that in the wild-type strain, indicating that this gene is not involved in the modification of lipid A. Our results advance our knowledge of the biosynthesis pathway and the role of VLCFAs-modified lipid A in free-living and symbiotic states of Bradyrhizobium strains.

9.
ChemistryOpen ; 6(4): 541-553, 2017 08.
Article in English | MEDLINE | ID: mdl-28794950

ABSTRACT

The importance of the outer membrane and of its main constituent, lipopolysaccharide, in the symbiosis between rhizobia and leguminous host plants has been well studied. Here, the first complete structural characterization of the entire lipopolysaccharide from an O-chain-deficient Bradyrhizobium ORS285 rfaL mutant is achieved by a combination of chemical analysis, NMR spectroscopy, MALDI MS and MS/MS. The lipid A structure is shown to be consistent with previously reported Bradyrhizobium lipid A, that is, a heterogeneous blend of penta- to hepta-acylated species carrying a nonstoichiometric hopanoid unit and possessing very-long-chain fatty acids ranging from 26:0(25-OH) to 32:0(31-OH). The structure of the core oligosaccharide region, fully characterized for the first time here, is revealed to be a nonphosphorylated linear chain with methylated sugar residues, with a heptose residue exclusively present in the outer core region, and with the presence of two singly substituted 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residues, one of which is located in the outer core region. The lipid A moiety is linked to the core moiety through an uncommon 4-substituted Kdo unit.

10.
Genome Announc ; 5(30)2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28751380

ABSTRACT

Here, we report the complete genome sequence of Bradyrhizobium sp. strain ORS285, which is able to nodulate Aeschynomene legumes using two distinct strategies that differ in the requirement of Nod factors. The genome sequence information of this strain will help understanding of the different mechanisms of interaction of rhizobia with legumes.

11.
PLoS One ; 11(2): e0148884, 2016.
Article in English | MEDLINE | ID: mdl-26849805

ABSTRACT

The photosynthetic bradyrhizobia are able to use a Nod-factor independent process to induce nitrogen-fixing nodules on some semi-aquatic Aeschynomene species. These bacteria display a unique LPS O-antigen composed of a new sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic character. In this study, to check this hypothesis, we isolated mutants affected in the O-antigen synthesis by screening a transposon mutant library of the ORS285 strain for clones altered in colony morphology. Over the 10,000 mutants screened, five were selected and found to be mutated in two genes, rfaL, encoding for a putative O-antigen ligase and gdh encoding for a putative dTDP-glucose 4,6-dehydratase. Biochemical analysis confirmed that the LPS of these mutants completely lack the O-antigen region. However, no effect of the mutations could be detected on the symbiotic properties of the mutants indicating that the O-antigen region of photosynthetic Bradyrhizobium strains is not required for the establishment of symbiosis with Aeschynomene.


Subject(s)
Bradyrhizobium/metabolism , Fabaceae/microbiology , O Antigens/biosynthesis , Symbiosis/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Ligases/genetics , Ligases/metabolism , Mutation , O Antigens/genetics , Sugar Alcohol Dehydrogenases/genetics , Sugar Alcohol Dehydrogenases/metabolism
12.
mBio ; 6(5): e01251-15, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26489859

ABSTRACT

UNLABELLED: A better understanding of how bacteria resist stresses encountered during the progression of plant-microbe symbioses will advance our ability to stimulate plant growth. Here, we show that the symbiotic system comprising the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens and the legume Aeschynomene afraspera requires hopanoid production for optimal fitness. While methylated (2Me) hopanoids contribute to growth under plant-cell-like microaerobic and acidic conditions in the free-living state, they are dispensable during symbiosis. In contrast, synthesis of extended (C35) hopanoids is required for growth microaerobically and under various stress conditions (high temperature, low pH, high osmolarity, bile salts, oxidative stress, and antimicrobial peptides) in the free-living state and also during symbiosis. These defects might be due to a less rigid membrane resulting from the absence of free or lipidA-bound C35 hopanoids or the accumulation of the C30 hopanoid diploptene. Our results also show that C35 hopanoids are necessary for symbiosis only with the host Aeschynomene afraspera but not with soybean. This difference is likely related to the presence of cysteine-rich antimicrobial peptides in Aeschynomene nodules that induce drastic modification in bacterial morphology and physiology. The study of hopanoid mutants in plant symbionts thus provides an opportunity to gain insight into host-microbe interactions during later stages of symbiotic progression, as well as the microenvironmental conditions for which hopanoids provide a fitness advantage. IMPORTANCE: Because bradyrhizobia provide fixed nitrogen to plants, this work has potential agronomical implications. An understanding of how hopanoids facilitate bacterial survival in soils and plant hosts may aid the engineering of more robust agronomic strains, especially relevant in regions that are becoming warmer and saline due to climate change. Moreover, this work has geobiological relevance: hopanes, molecular fossils of hopanoids, are enriched in ancient sedimentary rocks at discrete intervals in Earth history. This is the first study to uncover roles for 2Me- and C35 hopanoids in the context of an ecological niche that captures many of the stressful environmental conditions thought to be important during (2Me)-hopane deposition. Though much remains to be done to determine whether the conditions present within the plant host are shared with niches of relevance to the rock record, our findings represent an important step toward identifying conserved mechanisms whereby hopanoids contribute to fitness.


Subject(s)
Bradyrhizobium/metabolism , Bradyrhizobium/physiology , Fabaceae/microbiology , Symbiosis , Triterpenes/metabolism , Glycine max/microbiology
13.
Nat Commun ; 5: 5106, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25355435

ABSTRACT

Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A. Biophysical analyses of reconstituted liposomes indicate that this hopanoid-lipid A structure reinforces the stability and rigidity of the outer membrane. In addition, the bacterium produces other hopanoid molecules not linked to LPS. A hopanoid-deficient strain, lacking a squalene hopene cyclase, displays increased sensitivity to stressful conditions and reduced ability to survive intracellularly in the host plant. This unusual combination of hopanoid and LPS molecules may represent an adaptation to optimize bacterial survival in both free-living and symbiotic states.


Subject(s)
Bradyrhizobium/physiology , Fabaceae/microbiology , Lipid A/metabolism , Plant Root Nodulation , Root Nodules, Plant/microbiology , Triterpenes/metabolism , Fabaceae/ultrastructure , Lipid A/chemistry , Molecular Structure , Root Nodules, Plant/ultrastructure , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...