Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 3913, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24905053

ABSTRACT

The controlled creation of defects in silicon carbide represents a major challenge. A well-known and efficient tool for defect creation in dielectric materials is the irradiation with swift (E(kin) ≥ 500 keV/amu) heavy ions, which deposit a significant amount of their kinetic energy into the electronic system. However, in the case of silicon carbide, a significant defect creation by individual ions could hitherto not be achieved. Here we present experimental evidence that silicon carbide surfaces can be modified by individual swift heavy ions with an energy well below the proposed threshold if the irradiation takes place under oblique angles. Depending on the angle of incidence, these grooves can span several hundreds of nanometres. We show that our experimental data are fully compatible with the assumption that each ion induces the sublimation of silicon atoms along its trajectory, resulting in narrow graphitic grooves in the silicon carbide matrix.

2.
Beilstein J Nanotechnol ; 5: 291-7, 2014.
Article in English | MEDLINE | ID: mdl-24778951

ABSTRACT

Thinning out MoS2 crystals to atomically thin layers results in the transition from an indirect to a direct bandgap material. This makes single layer MoS2 an exciting new material for electronic devices. In MoS2 devices it has been observed that the choice of materials, in particular for contact and gate, is crucial for their performance. This makes it very important to study the interaction between ultrathin MoS2 layers and materials employed in electronic devices in order to optimize their performance. In this work we used NC-AFM in combination with quantitative KPFM to study the influence of the substrate material and the processing on single layer MoS2 during device fabrication. We find a strong influence of contaminations caused by the processing on the surface potential of MoS2. It is shown that the charge transfer from the substrate is able to change the work function of MoS2 by about 40 meV. Our findings suggest two things. First, the necessity to properly clean devices after processing as contaminations have a great impact on the surface potential. Second, that by choosing appropriate materials the work function can be modified to reduce contact resistance.

3.
Nanotechnology ; 22(26): 265703, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21576809

ABSTRACT

We present atomic force microscopy and scanning Kelvin probe data obtained under ultra-high vacuum conditions from graphene exfoliated on crystalline SrTiO(3) substrates. The contact potential difference shows a monotonic increase with the number of graphene layers until after five layers of saturation is reached. By identifying the saturation value with the work function of graphite we determine the work function of single and bilayer graphene to be Φ(SLG) = 4.409 ± 0.039 eV and Φ(BLG) = 4.516 ± 0.035 eV, respectively. In agreement with the higher work function of single-layer graphene with respect to free-standing graphene, our measurements indicate an accumulation of charge carriers corresponding to a doping of the exfoliated graphene layer with electrons.

SELECTION OF CITATIONS
SEARCH DETAIL
...