Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36496956

ABSTRACT

Starch overload in horses causes gastrointestinal and metabolic disorders that are associated with microbiota changes. Therefore, we identified the fecal microbiota and hypothesized that intracecal injection of alkaline solution (buffer; Mg(OH)2 + Al(OH)3) could stabilize these microbiota and clinical changes in horses submitted to corn starch overload. Ten crossbred horses (females and geldings) were allocated to group I (water−saline and starch−buffer treatments) and group II (water−buffer and starch−saline treatments). Clinical signs, gross analysis of the feces, and fecal microbiota were evaluated through 72 h (T0; T8; T12; T24; T48; T72). Corn starch or water were administrated by nasogastric tube at T0, and the buffer injected into the cecum at T8 in starch−buffer and water−buffer treatments. Starch overload reduced the richness (p < 0.001) and diversity (p = 0.001) of the fecal microbiota. However, the starch−buffer treatment showed greater increase in amylolytic bacteria (Bifidobacterium 0.0% to 5.6%; Lactobacillus 0.1% to 7.4%; p < 0.05) and decrease in fibrolytic bacteria (Lachnospiraceae 10.2% to 5.0%; Ruminococcaceae 11.7% to 4.2%; p < 0.05) than starch−saline treatment. Additionally, animals that received starch−buffer treatment showed more signs of abdominal discomfort and lameness associated with dysbiosis (amylolytic r > 0.5; fribolytic r < 0.1; p < 0.05), showing that cecal infusion of buffer did not prevent, but intensified intestinal disturbances and the risk of laminitis.

2.
Lasers Med Sci ; 35(5): 1103-1109, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32062713

ABSTRACT

The reconstructive techniques have been widely used in Veterinary Medicine. The post-operative adjuvants therapies like the low-level laser therapy (LLLT) are used to decrease inherent complications to reconstructive surgeries. This article purposed to define the LLLT effects on the healing, inflammation, and vascularization of the skin grafts in applicable time intervals to veterinary surgical routine. Forty rats (Rattus norvegicus albinus wistar) were used and each one was submitted to autogenous cutaneous mesh grafting in the interescapular region. The rats were randomly distributed in five groups (G1, G2, G3, G4, and G5) in accordance with the 6 J/cm2 or 10 J/cm2 dose every 3 or 5 days. These treatments were applied on the skin graft for 15 days. The histochemical evaluation with Picrosirius showed greater expression of collagen type 1 - red in grafts of G5 (p < 0.05), while in G1 did not; the expression of collagen type III - green was not induced by LLLT. The histochemical evaluation with hematoxylin-eosin showed greater numbers of fibroblasts in grafts of G4 (p < 0.05) and less hemorrhage in grafts of G5 (p < 0.05). There was modulation of the inflammatory response in irradiated skin grafts. It is concluded the exhibition of the skin grafts to 6 J/cm2 or 10 J/cm2 dose every 5 days improved the healing and the modulation of the local inflammation.


Subject(s)
Inflammation/pathology , Low-Level Light Therapy , Neovascularization, Physiologic , Skin Transplantation , Skin/blood supply , Skin/radiation effects , Wound Healing/radiation effects , Animals , Collagen Type I/metabolism , Collagen Type III/metabolism , Image Processing, Computer-Assisted , Male , Rats, Wistar , Skin/pathology , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...