Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(10): e05206, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33088963

ABSTRACT

Berry production is a non-wood product worldwide recognized by its nutritional value and taste, but the most studied species are non-native commercial plants in productive areas, leaving aside native berries. We propose that native berries (Berberis microphylla G.Forst) naturally growing in degradation forests areas could diversify livestock establishment production and complement traditional uses (e.g., livestock). The aims of this work were to 1) environmentally characterize (e.g., soil nutrient content and physical conditions, air conditions and photosynthetically active radiation) in three degraded Nothofagus antarctica Oerst. forest (due to past fires and livestock use) of Tierra del Fuego; and 2) evaluate berries production of B. microphylla in terms of quality production (e.g., fruit number and weigh per shrub) and in terms of quality (individual fruit weight, fruit pulp percentage, and soluble solids content) to assess provisioning ecosystem service of this native shrub in different degraded areas. Studied sites were defined as: 1) Severe soil degradation condition (SEV) (high frequency of horses, bulls and some native guanacos year round, severe soil erosion, and shorter herbaceous layer), 2) Moderate soil degradation condition (MOD) (cattle and guanaco year round, intermediate level of soil erosion and intermediate height of herbaceous layer), and 3) Slight soil degradation condition (SLI) (livestock only during winter, but high frequency of native guanacos, lower soil erosion and taller herbaceous layer). (SEV) had the highest air and soil temperature, least soils nutrients content, highest bulk density, the least soil water content and the poorest fruit production. (MOD) had the highest soil water content and nutrient-rich soils, while (SLI) had the highest relative air humidity and PAR. B. microphylla shrubs grow with similar morphology on the different soil degraded condition. The highest fruit production were at (SLI), however the (SEV) had the highest soluble solids. We conclude that calafate shrubs in degraded Nothofagus forests offer a provisioning ecosystem service through their excellent fruits quality. Livestock farms could diversify their production through native fruits taking advantage of the altered areas occupied by B. microphylla. However, we recommend avoiding intensive livestock use in burned forests since it could lead to an irreversible soil erosion. Proper livestock management in Nothofagus burned forest could keep over the time not only the recognized ecosystem provision services (fruits, meat, wood), but also those of regulation and support that calafate shrubs offer and that make the functionality of the ecosystem.

2.
Heliyon ; 6(1): e03264, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993526

ABSTRACT

Berberis microphylla G. Forst. commonly named calafate, is a Patagonian shrub that grows in humid areas of the steppe, coastal thickets, edges and gaps of Nothofagus forests or along streams and rivers, with small purple berries. The objective of this study was to evaluate the changes in leaf nutrient (carbon, nitrogen, carbon:nitrogen, phosphorus and potassium) and pigment contents (chlorophyll a and b, chlorophyll a:b ratio and carotenoids) of B. microphylla plants growing under different irradiances (low = 24%, medium = 57%, and high = 100% of the natural irradiance) and fertilization levels (0 = 0.00 g, 1 = 3.36 g, and 2 = 6.72 g per plant) during two growing seasons (2008-2009, 2009-2010). Also, we explored the relationships of these variables with anthocyanin, as well as with total phenol fruit contents. The fertilization has been highlighted, particularly in the content of foliar nutrients, where nitrogen, phosphorus and potassium contents were highest with fertilization level 2 (2.0%, 0.1%, and 0.6%, respectively), while carbon:nitrogen ratio (37.5) was maximum on fertilization level 0. Irradiance has greatly affected the content of foliar pigments. Thus, chlorophyll a, b, and carotenoids were highest under low irradiance (0.4, 0.1 and 0.2 mmol/m2, respectively), while chlorophyll a:b ratio was maximum under medium and high irradiance conditions (3.1). In addition, the quantity of fruit secondary metabolite (anthocyanin and phenol) could be estimated using carbon and potassium leaf contents and chlorophyll a and b contents. On the other hand, the annual climatic variability between 2008-2009 and 2009-2010 mainly affected the variables on nutrient and pigment contents, likely evidencing the influence of two distinct climate periods, El Niño/La Niña phenomena, respectively. The changes observed in the leaf nutrient and pigment contents of B. microphylla could be related to the acclimation capacity of B. microphylla shrubs to changes in environmental conditions via arrangements in leaf composition.

SELECTION OF CITATIONS
SEARCH DETAIL
...