Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Environ Pollut ; 336: 122377, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37586682

ABSTRACT

The present study assessed for the first time the magnitude and dietary ecological source of total mercury (THg) exposure in a southern population of white-tailed eagles (Haliaeetus albicilla), an apex predator species shown valuable for environmental biomonitoring. This population depends on the Kopacki rit Nature Park - the most important breeding site. We assessed THg exposure, using nestling body feathers collected between 2014-2019 (n = 72), and potential dietary ecological sources, proxied by prey remains and stable isotope analysis. Results show THg concentrations vary significantly over the years, though not showing any time trend. Prey remains analysis shows nests with aquatic prey remains to exhibit higher THg concentrations (median: 7.57 µg g-1 dw; min - max: 6.00-13.16 µg g-1 dw) compared to those with terrestrial remains (median: 3.94 µg g-1 dw; min - max: 0.28-12.04 µg g-1 dw) or evidencing a mixed diet (median: 7.43 µg g-1 dw; min - max: 3.38-12.04 µg g-1 dw). Nests with a predominant aquatic diet show elevated lower δ13C and higher δ15N values, indicating agreement between both dietary approaches. The model selection reveals a combination of year and δ15N best explain the variability in feather THg concentrations. Complementing these predictors with a dietary descriptor based on prey remains results in a poorer model fit and lowered explanatory power, similar to sexing the nestlings. The observed body feather THg concentrations (median: 6.99 µg g-1 dw; min - max: 0.27 - 17.16 µg g-1 dw) exceeded putative biogeochemical background levels (5.00 µg g-1 dw) in 71% of the nestlings, though, did not seem to exceed a threshold at which detrimental physiological effects are expected (40 µg g-1 dw). Continued monitoring is warranted as the studied population is likely exposed to a larger cocktail of contaminants while resident-protected bird areas.

2.
Bull Environ Contam Toxicol ; 110(6): 100, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37266735

ABSTRACT

Mercury (Hg) and stable carbon and nitrogen isotope ratios were analysed in body feathers from nestlings of white-tailed eagles (Haliaeetus albicilla) (WTE; n = 13) and Northern goshawks (Accipiter gentilis) (NG; n = 8) and in red blood cells (RBC) from NG (n = 11) from Norway. According to linear mixed model, species factor was significant in explaining the Hg concentration in feathers (LMM; p < 0.001, estimate (WTE) = 2.51, 95% CI = 1.26, 3.76), with concentrations higher in WTE (3.01 ± 1.34 µg g-1 dry weight) than in NG (0.51 ± 0.34 µg g-1 dry weight). This difference and the isotopic patterns for each species, likely reflect their diet, as WTE predominantly feed on a marine and higher trophic-chain diet compared to the terrestrial NG. In addition, Hg concentrations in RBCs of NG nestlings were positively correlated with feather Hg concentrations (Rho = 0.77, p = 0.03), supporting the potential usefulness of nestling body feathers to biomonitor and estimate Hg exposure. Hg levels in both species were generally below the commonly applied toxicity threshold of 5 µg g-1 in feathers, although exceeded in two WTE (6.08 and 5.19 µg g-1 dry weight).


Subject(s)
Eagles , Environmental Pollutants , Mercury , Animals , Environmental Monitoring , Environmental Pollutants/analysis , Feathers/chemistry , Mercury/analysis , Norway
3.
Environ Res ; 228: 115923, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37072083

ABSTRACT

Exposure to persistent organic pollutants (POPs), such as organochlorines (OCs) and polybrominated diphenyl ethers (PBDEs), is associated with adverse health effects in wildlife. Many POPs have been banned and consequently their environmental concentrations have declined. To assess both temporal trends of POPs and their detrimental impacts, raptors are extensively used as biomonitors due to their high food web position and high contaminant levels. White-tailed eagles (WTEs; Haliaeetus albicilla) in the Baltic ecosystem represent a sentinel species of environmental pollution, as they have suffered population declines due to reproductive failure caused by severe exposure to dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCB) during the 1960s through 1980s. However, there is a lack of long-term studies that cover a wide range of environmental contaminants and their effects at the individual level. In this study, we used 135 pooled samples of shed body feathers collected in 1968-2012 from breeding WTE pairs in Sweden. Feathers constitute a temporal archive for substances incorporated into the feather during growth, including corticosterone, which is the primary avian glucocorticoid and a stress-associated hormone. Here, we analysed the WTE feather pools to investigate annual variations in feather corticosterone (fCORT), POPs (OCs and PBDEs), and stable carbon and nitrogen isotopes (SIs; dietary proxies). We examined whether the expected fluctuations in POPs affected fCORT (8-94 pg. mm-1) in the WTE pairs. Despite clear temporal declining trends in POP concentrations (p < 0.01), we found no significant associations between fCORT and POPs or SIs (p > 0.05 in all cases). Our results do not support fCORT as a relevant biomarker of contaminant-mediated effects in WTEs despite studying a highly contaminated population. However, although not detecting a relationship between fCORT, POP contamination and diet, fCORT represents a non-destructive and retrospective assessment of long-term stress physiology in wild raptors otherwise not readily available.


Subject(s)
Eagles , Environmental Pollutants , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Animals , Corticosterone/analysis , Feathers , Retrospective Studies , Halogenated Diphenyl Ethers/analysis , Ecosystem , Environmental Monitoring/methods , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Hydrocarbons, Chlorinated/analysis
4.
Sci Total Environ ; 850: 157667, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35907551

ABSTRACT

To assess how climate-sensitive factors may affect the exposure to organochlorines (OCs) and perfluoroalkyl substances (PFASs), we monitored concentrations in eggs of the common goldeneye (Bucephala clangula) over two decades (1999-2019) in central Norway. The goldeneye alternates between marine and freshwater habitats and is sensitive to climate variation, especially due to alterations in ice conditions which may affect feeding conditions. We assessed how biological factors such as diet (stable isotopes δ13C and δ15N), the onset of egg laying, and physical characteristics such as winter climate (North Atlantic Oscillation: NAOw) influenced exposure. We predicted compounds to show different temporal trends depending on whether they were still in production (i.e. some PFASs) or have been banned (i.e. legacy OCs and some PFASs). Therefore, we controlled for potential temporal trends in all analyses. There were declining trends for α- and γ-hexachlorocyclohexane (HCH), oxychlordane, cis-chlordane, cis-nonachlor, p,p'-dichlorodiphenyltrichloroethane (p.p'-DDT) and less persistent polychlorinated biphenyl (PCB) congeners (e.g. PCB101). In contrast, the dominant compounds, such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and persistent PCB congeners, were stable, whereas hexachlorobenzene (HCB) increased over time. Most OCs were positively related to δ15N, suggesting higher exposure in birds feeding at upper trophic levels. Chlordanes and HCB were positively associated with δ13C, indicating traces of marine input for these compounds, whereas the relationships to most PCBs were negative. Among PFASs, perfluorooctanesulfonamide (PFOSA) and perfluorohexane sulfonic acid (PFHxS) declined. Most PFASs were positively associated with δ13C, whereas there were no associations with δ15N. Egg laying date was positively associated to perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggesting that some of the PFAS load originated from the wintering locations. Although NAOw had little impact on the exposure to organohalogenated contaminants, factors sensitive to climate change, especially diet, were associated with the exposure to OHCs in goldeneyes.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Animals , Biological Factors , Birds , Chlordan , DDT , Dichlorodiphenyl Dichloroethylene , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Fresh Water , Hexachlorobenzene , Hexachlorocyclohexane , Hydrocarbons, Chlorinated/analysis , Ice , Polychlorinated Biphenyls/analysis
5.
Sci Total Environ ; 844: 156944, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35752241

ABSTRACT

Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.


Subject(s)
Mercury , Animals , Arctic Regions , Birds , Environmental Monitoring , Feathers/chemistry , Humans , Mercury/analysis
6.
Environ Res ; 212(Pt D): 113455, 2022 09.
Article in English | MEDLINE | ID: mdl-35580663

ABSTRACT

Insight into processes determining the exposure of organohalogenated contaminants (OHCs) in wildlife might be gained from comparing predators in different ecosystems. This study compared two avian predator species with similar food chain lengths: the goldeneye duck (Bucephala clangula) and the tawny owl (Strix aluco) breeding in adjacent freshwater- and terrestrial ecosystems in central Norway. We measured lipophilic organochlorines (OCs) and protein-bound perfluorinated substances (PFASs) in eggs of the two species over 21 years (1999-2019). Across years, the proportional distribution of OCs (∼90% of the ΣOHC load) relative to PFASs (∼10%) was similar in the two species. Moreover, ΣOC concentrations were similar between the species, but PFAS compounds were 2-12 times higher in the goldeneyes than in tawny owls. OC-pesticides dominated in tawny owls (∼60% of ΣOC), whereas persistent polychlorinated biphenyl (PCBs) congeners were the main OC components in goldeneyes (∼70% of ΣOC). The lipid-normalized concentrations of most OC-pesticides and the less persistent PCB101 declined significantly in both species. Hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), and more persistent PCBs decreased in tawny owls, while they tended to increase in goldeneyes. The increase in HCB was particulary robust. Among the PFASs, contrasted temporal trends were found across the species for four out of 11 compounds: PFOS declined while most perfluorocarboxylic acids (PFCAs) increased in tawny owls. In contrast, most PFASs were stable in goldeneyes. Moreover, there was no annual covariance between the OHC exposure in the two species: i.e., high concentrations in one species in a given year did not translate into high concentrations in the other. Hence, the two avian predators in adjacent ecosystems seem to be subject to different processes determining the OHC exposure, probably related to variation in diet and climate, long-range transport of different contaminants, and emissions of pollution locally.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Strigiformes , Animals , Dichlorodiphenyl Dichloroethylene , Ecosystem , Environmental Pollutants/analysis , Fresh Water , Hexachlorobenzene , Hydrocarbons, Chlorinated/analysis , Polychlorinated Biphenyls/analysis
7.
Environ Toxicol Chem ; 41(6): 1508-1519, 2022 06.
Article in English | MEDLINE | ID: mdl-35312196

ABSTRACT

Fourteen legacy organochlorine (OC) contaminants and 12 perfluoroalkyl substances (PFASs) were measured in eggs of tawny owls (Strix alueco) in central Norway (1986-2019). We expected OCs to have reached stable equilibrium levels due to bans, and that recent phase-out of some PFASs would have slowed the increase of these compounds. ∑OC comprised on average approximately 92% of the measured compounds, whereas ∑PFAS accounted for approximately 8%. However, whereas the ∑OC to ∑PFAS ratio was approximately 60 in the first 5 years of the study, it was only approximately 11 in the last 5 years. Both OC pesticides and polychlorinated biphenyls (PCBs) showed substantial declines over the study period (~85%-98%): hexachlorocyclohexanes and chlordanes seemed to be levelling off, whereas p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlororbenzene (HCB), and most PCB congeners still seemed to decline at a more or less constant rate. While the concentration of perfluorooctane sulfonic acid (PFOS), the dominating PFAS, was reduced by approximately 43%, other perfluorinated sulfonates (PFSAs) showed only minor changes. Moreover, the median concentrations of seven perfluorinated carboxylic acids (PFCAs) increased approximately five-fold over the study period. Perfluorononanoic acid and perfluoroundecanoate acid, however, seemed to be levelling off in recent years. In contrast, perfluorododecanoic acid, perfluorodecanoate acid, perfluorotridecanoic acid, and perfluorotetradecanoic acid seemed to increase more or less linearily. Finally, perfluorooctanoic acid (PFOA) was increasingly likely to be detected over the study period. Hence, most legacy OCs and PFOS have not reached a lower threshold with stable background levels, and voluntary elimination of perfluoroalkyl carboxylates still has not resulted in declining levels in tawny owls in central Norway. Environ Toxicol Chem 2022;41:1508-1519. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Raptors , Strigiformes , Animals , Carboxylic Acids , Environmental Monitoring , Environmental Pollutants/analysis , Fluorocarbons/analysis , Hydrocarbons, Chlorinated/analysis
8.
Environ Sci Technol ; 56(4): 2443-2454, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35112833

ABSTRACT

Mercury (Hg) is highly toxic in its methylated form (MeHg), and global change is likely to modify its bioavailability in the environment. However, it is unclear how top predators will be impacted. We studied blood Hg concentrations of chick-rearing black-legged kittiwakes Rissa tridactyla (2000-2019) in Svalbard (Norway). From 2000 to 2019, Hg concentrations followed a U-shaped trend. The trophic level, inferred from nitrogen stable isotopes, and chlorophyll a (Chl a) concentrations better predicted Hg concentrations, with positive and U-shaped associations, respectively. As strong indicators of primary productivity, Chl a concentrations can influence production of upper trophic levels and, thus, fish community assemblage. In the early 2000s, the high Hg concentrations were likely related to a higher proportion of Arctic prey in kittiwake's diet. The gradual input of Atlantic prey in kittiwake diet could have resulted in a decrease in Hg concentrations until 2013. Then, a new shift in the prey community, added to the shrinking sea ice-associated release of MeHg in the ocean, could explain the increasing trend of Hg observed since 2014. The present monitoring provides critical insights about the exposure of a toxic contaminant in Arctic wildlife, and the reported increase since 2014 raises concern for Arctic seabirds.


Subject(s)
Charadriiformes , Mercury , Animals , Arctic Regions , Chlorophyll A , Environmental Monitoring , Mercury/analysis , Nitrogen Isotopes
9.
Environ Res ; 208: 112712, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35016866

ABSTRACT

Telomeres are used as biomarkers of vertebrate health because of the link between their length, lifespan, and survival. Exposure to environmental stressors appears to alter telomere dynamics, but little is known about telomere length and persistent organic pollutant (POP) exposure in wildlife. The white-tailed eagle (WTE; Haliaeetus albicilla) is an avian top predator that accumulates high levels of POPs and may subsequently suffer adverse health effects. Here we study the Baltic WTE population that is well documented to have been exposed to large contaminant burdens, thereby making it a promising candidate species for analyzing pollutant-mediated effects on telomeres. We investigated telomere lengths in WTE nestlings (n = 168) over 19 years and examined legacy POP concentrations (organochlorines and polybrominated diphenyl ethers) in whole blood and serum as potential drivers of differences in telomere length. Although we detected significant year-to-year variations in telomere lengths among the WTE nestlings, telomere lengths did not correlate with any of the investigated POP concentrations of several classes. Given that telomere lengths did not associate with POP contamination in the Baltic WTE nestlings, we propose that other environmental and biological factors, which likely fluctuate on a year-to-year basis, could be more important drivers of telomere lengths in this population.


Subject(s)
Eagles , Environmental Pollutants , Animals , Environmental Monitoring , Persistent Organic Pollutants , Sweden , Telomere
10.
J Hered ; 112(5): 430-435, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34343335

ABSTRACT

Coloration is evolutionarily labile and so provides an excellent trait for examining the repeatability of evolution. Here, we investigate the repeatability of the evolution of polymorphic variation in ventral plumage coloration in skuas (Stercorarius: Stercorariidae). In 2 species, arctic (S. parasiticus) and pomarine skuas (S. pomarinus), plumage polymorphism was previously shown to be associated with coding changes at the melanocortin-1 receptor (MC1R) locus. Here, we show that polymorphism in a third species, the south polar skua (S. maccormicki), is not associated with coding variation at MC1R or with variation at a Z-linked second candidate locus, tyrosinase-related protein 1 (TYRP1). Hence, convergent evolution of plumage polymorphisms in skuas is only partly repeatable at the level of the genetic locus involved. Interestingly, the pattern of repeatability in skuas is aligned not with phylogeny but with the nature of the phenotypic variation. In particular, south polar skuas show a strong sex bias to coloration that is absent in the other species, and it may be that this has a unique genetic architecture.


Subject(s)
Charadriiformes , Animals , Feathers , Genetic Variation , Phenotype , Phylogeny , Pigmentation/genetics , Polymorphism, Genetic , Receptor, Melanocortin, Type 1/genetics
11.
Environ Pollut ; 284: 117434, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34062433

ABSTRACT

The Antarctic ecosystem represents a remote region far from point sources of pollution. Still, Antarctic marine predators, such as seabirds, are exposed to organohalogen contaminants (OHCs) which may induce adverse health effects. With increasing restrictions and regulations on OHCs, the levels and exposure are expected to decrease over time. We studied south polar skua (Catharacta maccormiciki), a top predator seabird, to compare OHC concentrations measured in whole blood from 2001/2002 and 2013/2014 in Dronning Maud Land. As a previous study found increasing organochlorine concentrations with sampling day during the 2001/2002 breeding season, suggesting dietary changes, we investigated if this increase was repeated in the 2013/2014 breeding season. In addition to organochlorines, we analyzed hydroxy-metabolites, brominated contaminants and per- and polyfluoroalkyl substances (PFAS) in 2013/2014, as well as dietary descriptors of stable isotopes of carbon and nitrogen, to assess potential changes in diet during breeding. Lipid normalized concentrations of individual OHCs were 63%, 87% and 105% higher for hexachlorobenzene (HCB), 1,1-dichloro-2,2-bis (p-chlorophenyl)ethylene (p,p'-DDE), and ∑Polychlorinated biphenyls (PCBs), respectively, in 2013/2014 compared to 2001/2002. South polar skuas males in 2013/2014 were in poorer body condition than in 2001/2002, and with higher pollutant levels. Poorer body condition may cause the remobilization of contaminants from stored body reserves, and continued exposure to legacy contaminants at overwintering areas may explain the unexpected higher OHC concentrations in 2013/2014 than 2001/2002. Concentrations of protein-associated PFAS increased with sampling day during the 2013/2014 breeding season, whereas the lipid-soluble chlorinated pesticides, PCBs and polybrominated diphenyl ether (PBDEs) showed no change. OHC occurrence was not correlated with stable isotopes. The PFAS biomagnification through the local food web at the colony should be investigated further.


Subject(s)
Charadriiformes , Environmental Pollutants , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Animals , Antarctic Regions , Ecosystem , Environmental Monitoring , Male , Seasons
12.
Environ Int ; 146: 106178, 2021 01.
Article in English | MEDLINE | ID: mdl-33246245

ABSTRACT

A wide range of species, including marine mammals, seabirds, birds of prey, fish and bivalves, were investigated for potential population health risks resulting from contemporary (post 2000) mercury (Hg) exposure, using novel risk thresholds based on literature and de novo contamination data. The main geographic focus is on the Baltic Sea, while data from the same species in adjacent waters, such as the Greater North Sea and North Atlantic, were included for comparative purposes. For marine mammals, 23% of the groups, each composing individuals of a specific sex and maturity from the same species in a specific study region, showed Hg-concentrations within the High Risk Category (HRC) and Severe Risk Category (SRC). The corresponding percentages for seabirds, fish and bivalves were 2.7%, 25% and 8.0%, respectively, although fish and bivalves were not represented in the SRC. Juveniles from all species showed to be at no or low risk. In comparison to the same species in the adjacent waters, i.e. the Greater North Sea and the North Atlantic, the estimated risk for Baltic populations is not considerably higher. These findings suggest that over the past few decades the Baltic Sea has improved considerably with respect to presenting Hg exposure to its local species, while it does still carry a legacy of elevated Hg levels resulting from high neighbouring industrial and agricultural activity and slow water turnover regime.


Subject(s)
Bivalvia , Mercury , Animals , Animals, Wild , Fishes , Humans , Mercury/analysis , Mercury/toxicity , North Sea , Risk Assessment
13.
Environ Sci Technol ; 54(16): 10217-10226, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32696640

ABSTRACT

Environmental factors that can influence telomeres are diverse, but the association between telomeres and exposure to environmental contaminants is yet to be elucidated. To date, prior studies have focused on legacy persistent chlorinated pollutants (POPs), while the effects of poly- and perfluoroalkyl substances (PFAS) have been poorly documented. Here, we investigated the associations among PFAS congeners, absolute telomere length (cross-sectional approach), and telomere dynamics (rate of telomere length change over time, longitudinal approach) in one of the most contaminated arctic top predators, the glaucous gull Larus hyperboreus from Svalbard. We further estimated the effect of PFAS on apparent survival rates and re-sighting probabilities using a 10-year capture/recapture dataset (2010-2019). We found that birds exposed to higher concentrations of perfluorononadecanoate (PFNA) (median of 1565 pg/mL of ww in males and 1370 pg/mL of ww in females) and perfluorotetradecanoate (PFTeDA) (median of 370 pg/mL of ww in males and 210 pg/mL of ww in females) showed the slowest rate of telomere shortening. We also found that high blood concentrations of perfluorooctanoate (PFOA) (median of 120 pg/mL of ww in males and 150 pg/mL of ww in females) and perfluorohexanesulfonate (PFHxS) (median of 495 pg/mL of ww in males and 395 pg/mL of ww in females) were positively associated with higher re-sighting probabilities and apparent survival in males but not in females. Our work is the first to report an association between single PFAS compounds and telomeres, and the first to link PFAS exposure with survival probabilities, suggesting that the effect of PFAS exposure might be more tied to the type of compound rather than the total concentration of PFAS.


Subject(s)
Environmental Pollutants , Fluorocarbons , Animals , Arctic Regions , Cross-Sectional Studies , Demography , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Female , Fluorocarbons/analysis , Fluorocarbons/toxicity , Male , Svalbard , Telomere/chemistry
14.
Environ Sci Technol ; 54(8): 5011-5020, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32200622

ABSTRACT

The white-tailed eagle (Haliaeetus albicilla) in Scandinavia has suffered from impaired reproduction due to high exposure to industrial pollution between the 1960s and 1980s. While population numbers are rising again, new contaminants, such as per- and polyfluoroalkyl substances (PFAS), are increasingly found in high trophic avifauna and are of concern to potentially impact once again on population health. In the present study, we examined PFAS levels in plasma of white-tailed eagle nestlings from northern Norway over the last decade (2008-2017). While PFOA and PFNA exposure did not follow a significant time trend, PFOS and PFHxS concentrations decreased over time, and ≥C11 perfluorinated carboxylic acids only seem to level off during the last four years. This may in fact be the first evidence for a change in the trend for some of these compounds. Furthermore, since several PFAS are expected to be highly present in aqueous film-forming foams used at airports, we also investigate the potential of the two main airports in the region to act as hotspots for PFAS. Our results indeed show decreasing exposure to PFOA with distance to the airports. Altogether, our results seem to show that legislation actions are effective, and continued concern for PFAS exposure of high trophic wildlife is still warranted, even in the northern environment.


Subject(s)
Alkanesulfonic Acids , Eagles , Environmental Pollutants , Fluorocarbons , Animals , Environmental Monitoring , Norway , Spatio-Temporal Analysis
15.
Environ Int ; 138: 105618, 2020 05.
Article in English | MEDLINE | ID: mdl-32169675

ABSTRACT

Understanding the spatiotemporal patterns of legacy organochlorines (OCs) is often difficult because monitoring practices differ among studies, fragmented study periods, and unaccounted confounding by ecological variables. We therefore reconstructed long-term (1939-2015) and large-scale (West Greenland, Norway, and central Sweden) trends of major legacy OCs using white-tailed eagle (Haliaeetus albicilla) body feathers, to understand the exposure dynamics in regions with different contamination sources and concentrations, as well as the effectiveness of legislations. We included dietary proxies (δ13C and δ15N) in temporal trend models to control for potential dietary plasticity. Consistent with the hypothesised high local pollution sources, levels of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) in the Swedish subpopulation exceeded those in the other subpopulations. In contrast, chlordanes (CHLs) and hexachlorobenzene (HCB) showed higher concentrations in Greenland, suggesting the importance of long-range transport. The models showed significantly decreasing trends for all OCs in Sweden in 1968-2011 except for CHLs, which only decreased since the 1980s. Nevertheless, median concentrations of DDTs and PCBs remained elevated in the Swedish subpopulation throughout the 1970s, suggesting that the decreases only commenced after the implementation of regulations during the 1970s. We observed significant trends of increasing concentrations of PCBs, CHLs and HCB in Norway from the 1930s to the 1970s/1980s and decreasing concentrations thereafter. All OC concentrations, except those of PCBs were generally significantly decreasing in the Greenland subpopulation in 1985-2013. All three subpopulations showed generally increasing proportions of the more persistent compounds (CB 153, p.p'-DDE and ß-HCH) and decreasing proportions of the less persistent ones (CB 52, p.p'-DDT, α- and γ-HCH). Declining trends of OC concentrations may imply the decreasing influence of legacy OCs in these subpopulations. Finally, our results demonstrate the usefulness of archived museum feathers in retrospective monitoring of spatiotemporal trends of legacy OCs using birds of prey as sentinels.


Subject(s)
Eagles , Environmental Pollutants , Polychlorinated Biphenyls , Animals , Environmental Monitoring , Environmental Pollutants/analysis , Feathers/chemistry , Greenland , Norway , Polychlorinated Biphenyls/analysis , Retrospective Studies , Sweden
16.
Gen Comp Endocrinol ; 291: 113420, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32032604

ABSTRACT

Incubating eggs represents a trade-off for parent birds between spending enough time fasting to take care of the clutch and to get enough nutrients for self-maintenance. It is believed that the pituitary hormone prolactin plays an important role in such allocation processes. Incubation does not solely imply the active warming of the eggs but also the active egg-turning to facilitate absorption of albumen by the embryo, reduce malposition and prevent the embryo from adhering to the inner shell membrane. However, how prolactin secretion is related to egg-turning behaviors is presently poorly addressed. In addition, several environmental contaminants can affect parental care behaviors through their endocrine disrupting properties but the effects of such contaminants on egg-turning behaviors remain so far unexplored. Using artificial eggs equipped with miniaturized data loggers, we investigated the relationships between egg-turning behaviors, prolactin secretion and contaminants burden in Arctic black-legged kittiwakes (Rissa tridactyla). Specifically, we examined the relationships between blood concentrations of poly- and perfluoroalkyl substances (PFASs), organochlorines (OCs), mercury (Hg), plasma prolactin levels and both egg-turning frequency and angular change. We also incorporated baseline corticosterone levels since this glucocorticoid is known to affect parental care. Plasma prolactin levels were positively related to angular change in female kittiwakes while corticosterone was not related to egg-turning behaviors in either sex. Hg was not related to egg-turning behaviors in either sex. We found contrasting associations between OCs and PFASs, since polychlorinated biphenyls (PCBs) were negatively associated with angular change in females, contrary to linear perfluorooctanesulfonate (PFOSlin) and perfluoroalkyl carboxylic acids (PFCAs) which were positively related to egg-turning frequency and angular change in both sexes. Additionally, PFASs concentrations were positively related to prolactin levels in female kittiwake. The possible stimulation of prolactin secretion by PFASs could therefore make adult kittiwakes to allocate more time taking care of their eggs, and thus possibly modify the trade-off between spending enough time caring for the clutch and obtaining enough nutrients at sea.


Subject(s)
Alkanesulfonic Acids/blood , Charadriiformes/blood , Environmental Pollutants/blood , Fluorocarbons/blood , Hydrocarbons, Chlorinated/blood , Ovum/physiology , Prolactin/blood , Animals , Arctic Regions , Corticosterone/blood , Environmental Pollution , Female , Geography , Male
17.
Environ Sci Technol ; 53(21): 12744-12753, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31599575

ABSTRACT

We reconstructed the first long-term (1968-2015) spatiotemporal trends of perfluoroalkyl substances (PFAS) using archived body feathers of white-tailed eagles (Haliaeetus albicilla) from the West Greenland (n = 31), Norwegian (n = 66), and Central Swedish Baltic coasts (n = 50). We observed significant temporal trends of perfluorooctane sulfonamide (FOSA), perfluorooctane sulfonate (PFOS), and perfluoroalkyl carboxylates (∑PFCAs) in all three subpopulations. Concentrations of FOSA and PFOS had started decreasing significantly since the mid-1990s to 2000 in the Greenland and Norwegian subpopulations, consistent with the 3M phase-out, though in sharp contrast to overall increasing trends observed in the Swedish subpopulation. Moreover, ∑PFCA concentrations significantly increased in all three subpopulations throughout the study periods. These temporal trends suggest on-going input of PFOS in the Baltic and of ∑PFCAs in all three regions. Considerable spatial variation in PFAS concentrations and profiles was observed: PFOS concentrations were significantly higher in Sweden, whereas FOSA and ∑PFCA concentrations were similar among the subpopulations. PFOS dominated the PFAS profiles in the Swedish and Norwegian subpopulations, in contrast to the domination of FOSA and ∑PFCAs in the Greenland one. Our spatiotemporal observations underline the usefulness of archived bird of prey feathers in monitoring spatiotemporal PFAS trends and urge for continued monitoring efforts in each of the studied subpopulations.


Subject(s)
Eagles , Fluorocarbons , Animals , Baltic States , Environmental Monitoring , Feathers , Greenland , Norway , Sweden
18.
BMC Vet Res ; 15(1): 375, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31660964

ABSTRACT

BACKGROUND: Since 2016, incursions of highly pathogenic avian influenza virus (HPAIV) H5N8 clade 2.3.4.4b have caused unprecedented clinical signs and mortality in white-tailed eagles (WTE; Haliaeetus albicilla) across Europe and have been found to be infecting other raptor species, such as the northern goshawk (NG; Accipiter gentilis). Before this study, no screening of Norwegian raptors had been undertaken. RESULTS: Plasma samples from 43 white-tailed eagle and 29 northern goshawk nestlings, from several locations across Norway were screened for antibodies to avian influenza viruses. No antibodies, and thus, no evidence of AIV exposure, were found in these Norwegian raptors. No clinical signs of AIV were observed in 43 white tailed eagles and 29 northern goshawks. CONCLUSIONS: There are currently no indications that white-tailed eagles and northern goshawks inhabiting Norway are threatened by the recent HPAIV outbreaks in other areas of Europe. Ongoing monitoring should, however, be maintained to detect potential future outbreaks.


Subject(s)
Antibodies, Viral/blood , Eagles , Hawks , Influenza A Virus, H5N8 Subtype/immunology , Influenza in Birds/immunology , Aging , Animals , Influenza in Birds/epidemiology , Norway/epidemiology
19.
Environ Res ; 178: 108678, 2019 11.
Article in English | MEDLINE | ID: mdl-31520824

ABSTRACT

In the present study, concentrations of legacy and emerging contaminants were determined in three non-destructive matrices (plasma, preen oil and body feathers) of northern goshawk (Accipiter gentilis) nestlings. Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), together with emerging pollutants, including per- and polyfluorinated alkyl substances (PFASs), novel brominated flame retardants (NBFRs), phosphorus flame retardants (PFRs) and Dechlorane Plus isomers (DPs) were targeted. Plasma, preen oil and feather samples were collected from 61 goshawk nestlings in Norway (Trøndelag and Troms) in 2015 and 2016, and pollutant concentrations were compared between the three matrices. In plasma, PFASs were detected in the highest concentrations, ranging between 1.37 and 36.0 ng/mL, which suggests that the nestlings were recently and continuously exposed to these emerging contaminants, likely through dietary input. In preen oil, OCPs (169-3560 ng/g) showed the highest concentrations among the investigated compounds, consistent with their high lipophilicity. PFRs (2.60-314 ng/g) were the dominant compounds in feathers and are thought to originate mainly from external deposition, as they were not detected in the other two matrices. NBFRs and DPs were generally not detected in the nestlings, suggesting low presence of these emerging contaminants in their environment and/or low absorption. Strong and significant correlations between matrices were found for all POPs (rs = 0.46-0.95, p < 0.001), except for hexachlorobenzene (HCB, rs = 0.20, p = 0.13). Correlations for PFASs were less conclusive: linear perfluorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnA), perfluorododecanoate (PFDoA) and perfluorotetradecanoate (PFTeA) showed strong and significant correlations between plasma and feathers (rs = 0.42-0.72, p < 0.02), however no correlation was found for perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA) and perfluorotridecanoate (PFTriA) (rs = 0.05-0.33, p = 0.09-0.85). A lack of consistency between the PFAS compounds (contrary to POPs), and between studies, prevents concluding on the suitability of the investigated matrices for PFAS biomonitoring.


Subject(s)
Environmental Monitoring , Environmental Pollutants/metabolism , Falconiformes/metabolism , Animals , Halogenated Diphenyl Ethers/metabolism , Norway , Polychlorinated Biphenyls/metabolism
20.
Environ Res ; 177: 108586, 2019 10.
Article in English | MEDLINE | ID: mdl-31377582

ABSTRACT

Environmental exposure to organohalogenated contaminants (OHCs), even at low concentrations, may cause detrimental effects on the development and health of wild birds. The present study investigated if environmental exposure to OHCs may influence the variation of multiple physiological parameters in Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. Plasma and feather samples were obtained from 70 nestlings at two archipelagos in Norway in 2015 and 2016. The selected physiological parameters were plasma concentrations of thyroid hormones (thyroxine, T4 and triiodothyronine, T3), plasma proteins (prealbumin, albumin, α1-, α2-, ß- and γ-globulins) and selected blood clinical chemical parameters (BCCPs) associated with liver and kidney functioning. Feather concentrations of corticosterone (CORTf) were also included to investigate the overall stress level of the nestlings. Concentrations of all studied physiological parameters were within the ranges of those found in other species of free-living birds of prey nestlings and indicated that the white-tailed eagle nestlings were in good health. Our statistical models indicated that perfluoroalkyl substances (PFASs) and legacy OHCs, such as polychlorinated biphenyls, organochlorinated pesticides and polybrominated diphenyl ethers, influenced only a minor fraction of the variation of plasma thyroid hormones, prealbumin and CORTf (5-15%), and partly explained the selected BCCPs (<26%). Most of the variation in each studied physiological parameter was explained by variation between nests, which is most likely due to natural physiological variation of nestlings in these nests. This indicates the importance of accounting for between nest variation in future studies. In the present nestlings, OHC concentrations were relatively low and seem to have played a secondary role compared to natural variation concerning the variation of physiological parameters. However, our study also indicates a potential for OHC-induced effects on thyroid hormones, CORTf, prealbumin and BCCPs, which could be of concern in birds exposed to higher OHC concentrations than the present white-tailed eagle nestlings.


Subject(s)
Eagles/physiology , Environmental Monitoring , Environmental Pollutants , Polychlorinated Biphenyls , Animals , Norway
SELECTION OF CITATIONS
SEARCH DETAIL
...