Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37404094

ABSTRACT

The implementation of attosecond photoelectron-photoion coincidence spectroscopy for the investigation of atomic and molecular dynamics calls for a high-repetition-rate driving source combined with experimental setups characterized by excellent stability for data acquisition over time intervals ranging from a few hours up to a few days. This requirement is crucial for the investigation of processes characterized by low cross sections and for the characterization of fully differential photoelectron(s) and photoion(s) angular and energy distributions. We demonstrate that the implementation of industrial-grade lasers, combined with a careful design of the delay line implemented in the pump-probe setup, allows one to reach ultrastable experimental conditions leading to an error in the estimation of the time delays of only 12 as over an acquisition time of 6.5 h. This result opens up new possibilities for the investigation of attosecond dynamics in simple quantum systems.

2.
Sci Adv ; 6(31): eaba7762, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32789174

ABSTRACT

Shape resonances in physics and chemistry arise from the spatial confinement of a particle by a potential barrier. In molecular photoionization, these barriers prevent the electron from escaping instantaneously, so that nuclei may move and modify the potential, thereby affecting the ionization process. By using an attosecond two-color interferometric approach in combination with high spectral resolution, we have captured the changes induced by the nuclear motion on the centrifugal barrier that sustains the well-known shape resonance in valence-ionized N2. We show that despite the nuclear motion altering the bond length by only 2%, which leads to tiny changes in the potential barrier, the corresponding change in the ionization time can be as large as 200 attoseconds. This result poses limits to the concept of instantaneous electronic transitions in molecules, which is at the basis of the Franck-Condon principle of molecular spectroscopy.

3.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170475, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30929623

ABSTRACT

One of the most ubiquitous techniques within attosecond science is the so-called reconstruction of attosecond beating by interference of two-photon transitions (RABBIT). Originally proposed for the characterization of attosecond pulses, it has been successfully applied to the accurate determination of time delays in photoemission. Here, we examine in detail, using numerical simulations, the effect of the spatial and temporal properties of the light fields and of the experimental procedure on the accuracy of the method. This allows us to identify the necessary conditions to achieve the best temporal precision in RABBIT measurements. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

4.
Science ; 358(6365): 893-896, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29097491

ABSTRACT

Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10-18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40-electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...