Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Syndr Relat Disord ; 21(1): 16-24, 2023 02.
Article in English | MEDLINE | ID: mdl-36318809

ABSTRACT

Background: Resting skeletal muscle in insulin resistance prefers to oxidize carbohydrate rather than lipid, exhibiting metabolic inflexibility. Although this is established in resting muscle, complexities involved in directly measuring fuel oxidation using indirect calorimetry across a muscle bed have limited studies of this phenomenon in working skeletal muscle. During mild exercise and at rest, whole-body indirect calorimetry imperfectly estimates muscle fuel oxidation. We provide evidence that a method termed "ΔRER" can reasonably estimate fuel oxidation in skeletal muscle activated by exercise. Methods: Completely sedentary volunteers (n = 20, age 31 ± 2 years, V̇O2peak 24.4 ± 1.5 mL O2 per min/kg) underwent glucose clamps to determine insulin sensitivity and graded exercise consisting of three periods of mild steady-state cycle ergometry (15, 30, 45 watts, or 10%, 20%, and 30% of maximum power) with measurements of whole-body gas exchange. ΔRER, the RER in working muscle, was calculated as (V̇CO2exercise -V̇CO2rest)/(V̇O2exercise - V̇O2rest), from which the fraction of fuel accounted for by lipid was estimated. Results: Lactate levels were low and stable during steady-state exercise. Muscle biopsies were used to estimate mitochondrial content. The rise of V̇O2 at onset of exercise followed a monoexponential function, with a time constant of 51 ± 7 sec, typical of skeletal muscle; the average O2 cost of work was about 12 mL O2/watt/min, representing a mechanical efficiency of about 24%. At work rates of 30 or 45 watts, active muscle relied predominantly on carbohydrate, independent of insulin sensitivity within this group of very sedentary volunteers. Conclusions: The fraction of muscle fuel oxidation from fat was predicted by power output (P < 0.001) and citrate synthase activity (P < 0.05), indicating that low mitochondrial content may be the main driver of fuel choice in sedentary people, independent of insulin sensitivity.


Subject(s)
Insulin Resistance , Humans , Adult , Carbohydrates , Exercise/physiology , Muscle, Skeletal/metabolism , Lipids , Oxygen Consumption
2.
Biochem Biophys Res Commun ; 487(3): 545-551, 2017 06 03.
Article in English | MEDLINE | ID: mdl-28414126

ABSTRACT

The VWA8 gene was first identified by the Kazusa cDNA project and named KIAA0564. Based on the observation, by similarity, that the protein encoded by KIAA0564 contains a Von Willebrand Factor 8 domain, KIAA0564 was named Von Willebrand Domain-containing Protein 8 (VWA8). The function of VWA8 protein is almost unknown. The purpose of this study was to characterize the tissue distribution, cellular location, and function of VWA8. In mice VWA8 protein was mostly distributed in liver, kidney, heart, pancreas and skeletal muscle, and is present as a long isoform and a shorter splice variant (VWA8a and VWA8b). VWA8 protein and mRNA were elevated in mouse liver in response to high fat feeding. Sequence analysis suggests that VWA8 has a mitochondrial targeting sequence and domains responsible for ATPase activity. VWA8 protein was targeted exclusively to mitochondria in mouse AML12 liver cells, and this was prevented by deletion of the targeting sequence. Moreover, the VWA8 short isoform overexpressed in insect cells using a baculovirus construct had in vitro ATPase activity. Deletion of the Walker A motif or Walker B motif in VWA8 mostly blocked ATPase activity, suggesting Walker A motif or Walker B motif are essential to the ATPase activity of VWA8. Finally, homology modeling suggested that VWA8 may have a structure most confidently similar to dynein motor proteins.


Subject(s)
Adenosine Triphosphatases/metabolism , Extracellular Matrix Proteins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Animals , Cells, Cultured , Computational Biology , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...