Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 46(4): 908-911, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33577545

ABSTRACT

A novel optical frequency division technique, called regenerative harmonic injection locking, is used to transfer the timing stability of an optical frequency comb with a repetition rate in the millimeter wave range (∼300GHz) to a chip-scale mode-locked laser with a ∼10GHz repetition rate. By doing so, the 300 GHz optical frequency comb is optically divided by a factor of 30× to 10 GHz. The stability of the mode-locked laser after regenerative harmonic injection locking is ∼10-12 at 1 s with a 1/τ trend. To facilitate optical frequency division, a coupled opto-electronic oscillator is implemented to assist the injection locking process. This technique is exceptionally power efficient, as it uses less than 100µW of optical power to achieve stable locking.

2.
Micromachines (Basel) ; 10(6)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212675

ABSTRACT

Miniaturization of frequency-comb sources could open a host of potential applications in spectroscopy, biomedical monitoring, astronomy, microwave signal generation, and distribution of precise time or frequency across networks. This review article places emphasis on an architecture with a semiconductor mode-locked laser at the heart of the system and subsequent supercontinuum generation and carrier-envelope offset detection and stabilization in nonlinear integrated optics.

SELECTION OF CITATIONS
SEARCH DETAIL
...