Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 137, 2019.
Article in English | MEDLINE | ID: mdl-30838009

ABSTRACT

Efficient seed dispersal in flowering plants is enabled by the development of fruits, which can be either dehiscent or indehiscent. Dehiscent fruits open at maturity to shatter the seeds, while indehiscent fruits do not open and the seeds are dispersed in various ways. The diversity in fruit morphology and seed shattering mechanisms is enormous within the flowering plants. How these different fruit types develop and which molecular networks are driving fruit diversification is still largely unknown, despite progress in eudicot model species. The orchid family, known for its astonishing floral diversity, displays a huge variation in fruit dehiscence types, which have been poorly investigated. We undertook a combined approach to understand fruit morphology and dehiscence in different orchid species to get more insight into the molecular network that underlies orchid fruit development. We describe fruit development in detail for the epiphytic orchid species Erycina pusilla and compare it to two terrestrial orchid species: Cynorkis fastigiata and Epipactis helleborine. Our anatomical analysis provides further evidence for the split carpel model, which explains the presence of three fertile and three sterile valves in most orchid species. Interesting differences were observed in the lignification patterns of the dehiscence zones. While C. fastigiata and E. helleborine develop a lignified layer at the valve boundaries, E. pusilla fruits did not lignify at these boundaries, but formed a cuticle-like layer instead. We characterized orthologs of fruit-associated MADS-domain transcription factors and of the Arabidopsis dehiscence-related genes INDEHISCENT (IND)/HECATE 3 (HEC3), REPLUMLESS (RPL) and SPATULA (SPT)/ALCATRAZ (ALC) in E. pusilla, and found that the key players of the eudicot fruit regulatory network appear well-conserved in monocots. Protein-protein interaction studies revealed that MADS-domain complexes comprised of FRUITFULL (FUL), SEPALLATA (SEP) and AGAMOUS (AG) /SHATTERPROOF (SHP) orthologs can also be formed in E. pusilla, and that the expression of HEC3, RPL, and SPT can be associated with dehiscence zone development similar to Arabidopsis. Our expression analysis also indicates differences, however, which may underlie fruit divergence.

2.
BMC Evol Biol ; 17(1): 89, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28335712

ABSTRACT

BACKGROUND: Thousands of flowering plant species attract pollinators without offering rewards, but the evolution of this deceit is poorly understood. Rewardless flowers of the orchid Erycina pusilla have an enlarged median sepal and incised median petal ('lip') to attract oil-collecting bees. These bees also forage on similar looking but rewarding Malpighiaceae flowers that have five unequally sized petals and gland-carrying sepals. The lip of E. pusilla has a 'callus' that, together with winged 'stelidia', mimics these glands. Different hypotheses exist about the evolutionary origin of the median sepal, callus and stelidia of orchid flowers. RESULTS: The evolutionary origin of these organs was investigated using a combination of morphological, molecular and phylogenetic techniques to a developmental series of floral buds of E. pusilla. The vascular bundle of the median sepal indicates it is a first whorl organ but its convex epidermal cells reflect convergence of petaloid features. Expression of AGL6 EpMADS4 and APETALA3 EpMADS14 is low in the median sepal, possibly correlating with its petaloid appearance. A vascular bundle indicating second whorl derivation leads to the lip. AGL6 EpMADS5 and APETALA3 EpMADS13 are most highly expressed in lip and callus, consistent with current models for lip identity. Six vascular bundles, indicating a stamen-derived origin, lead to the callus, stelidia and stamen. AGAMOUS is not expressed in the callus, consistent with its sterilization. Out of three copies of AGAMOUS and four copies of SEPALLATA, EpMADS22 and EpMADS6 are most highly expressed in the stamen. Another copy of AGAMOUS, EpMADS20, and the single copy of SEEDSTICK, EpMADS23, are most highly expressed in the stelidia, suggesting EpMADS22 may be required for fertile stamens. CONCLUSIONS: The median sepal, callus and stelidia of E. pusilla appear to be derived from a sepal, a stamen that gained petal identity, and stamens, respectively. Duplications, diversifying selection and changes in spatial expression of different MADS-box genes shaped these organs, enabling the rewardless flowers of E. pusilla to mimic an unrelated rewarding flower for pollinator attraction. These genetic changes are not incorporated in current models and urge for a rethinking of the evolution of deceptive flowers.


Subject(s)
Biological Mimicry , Flowers/anatomy & histology , Orchidaceae/anatomy & histology , Orchidaceae/genetics , Animals , Bees/anatomy & histology , Biological Evolution , Evolution, Molecular , Flowers/genetics , MADS Domain Proteins/genetics , Orchidaceae/classification , Phylogeny , Plant Proteins/genetics , Pollination
3.
Front Zool ; 13: 52, 2016.
Article in English | MEDLINE | ID: mdl-28018475

ABSTRACT

BACKGROUND: Hybrid zones are regions where individuals of two species meet and produce hybrid progeny, and are often regarded as natural laboratories to understand the process of species formation. Two microevolutionary processes can take place in hybrid zones, with opposing effects on population differentiation. Hybridization tends to produce genetic homogenization, reducing species differences, whereas the presence of mechanisms of reproductive isolation result in barriers to gene flow, maintaining or increasing differences between taxa. RESULTS: Here we study a contact zone between two hybridizing toad species, Bufo bufo and B. spinosus, through a combination of molecular (12 polymorphic microsatellites, four nuclear and two mitochondrial SNP markers) and morphological data in a transect in the northwest of France. The results show largely concordant clines across markers, defining a narrow hybrid zone of ca. 30 km wide. Most hybrids in the centre of the contact zone are classified as F2 or backcrossed individuals, with no individuals assigned to the F1 hybrid class. CONCLUSIONS: We discuss the implications of these results for our understanding of the evolutionary history of these species. We anticipate that the toad contact zone here described will become an important asset in the study of hybrid zone dynamics and evolutionary biology because of its easy access and the abundance of the species involved.

4.
Ann Bot ; 116(3): 437-55, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26071932

ABSTRACT

BACKGROUND AND AIMS: The first documented observation of pollination in Pleurothallidinae was that of Endrés, who noticed that the 'viscid sepals' of Specklinia endotrachys were visited by a 'small fly'. Chase would later identify the visiting flies as being members of the genus Drosophila. This study documents and describes how species of the S. endotrachys complex are pollinated by different Drosophila species. METHODS: Specimens of Specklinia and Drosophila were collected in the field in Costa Rica and preserved in the JBL and L herbaria. Flies were photographed, filmed and observed for several days during a 2-year period and were identified by a combination of non-invasive DNA barcoding and anatomical surveys. Tissue samples of the sepals, petals and labellum of Specklinia species were observed and documented by SEM, LM and TEM. Electroantennogram experiments were carried out on Drosophila hydei using the known aggregation pheromones ethyl tiglate, methyl tiglate and isopropyl tiglate. Floral compounds were analysed by gas chromatography-mass spectometry using those same pheromones as standards. KEY RESULTS: Flowers of S. endotrachys, S. pfavii, S. remotiflora and S. spectabilis are visited and pollinated by several different but closely related Drosophila species. The flies are arrested by aggregation pheromones, including ethyl tiglate, methyl tiglate and isopropyl tiglate, released by the flowers, and to which at least D. hydei is very sensitive. Visible nectar drops on the adaxial surface of sepals are secreted by nectar-secreting stomata, encouraging male and female Drosophila to linger on the flowers for several hours at a time. The flies frequently show courtship behaviour, occasionally copulating. Several different Drosophila species can be found on a single Specklinia species. CONCLUSIONS: Species of the S. endotrachys group share a similar pollination syndrome. There seem to be no species-specific relationships between the orchids and the flies. It is not expected that Specklinia species will hybridize naturally as their populations do not overlap geographically. The combination of pheromone attraction and nectar feeding is likely to be a generalized pollination syndrome in Pleurothallidinae.


Subject(s)
Drosophila/physiology , Orchidaceae/physiology , Pheromones/metabolism , Pollination , Animals , Appetitive Behavior , Female , Male , Plant Nectar , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...