Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(21): 10142-10154, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38669191

ABSTRACT

Organic electrodes may someday replace transition metals oxides, the current standard in electrochemical energy storage, including those with severe issues of availability, cost, and recyclability. To realize this more sustainable future, a thorough understanding of structure-property relationships and design rules for organic electrodes must be developed. Further, it is imperative that supramolecular interactions between organic species, which are often overlooked, be included in organic electrode design. In this review, we showcase how molecular and polymeric electrodes that host non-covalent interactions outperform materials without these features. Using select examples from the literature, we emphasize how dispersion forces, hydrogen-bonding, and radical pairing can be leveraged to improve the stability, capacity, and energy density of organic electrodes. Throughout this review, we identify potential next-generation designs and opportunities for continued investigation. We hope that this review will serve as a catalyst for collaboration between synthetic chemists and the energy storage community, which we view as a prerequisite to achieving high-performing supramolecular electrode materials.

2.
Chemistry ; 29(40): e202300821, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37156723

ABSTRACT

Lithium-sulfur batteries are promising candidates for next-generation energy storage devices due to their outstanding theoretical energy density. However, they suffer from low sulfur utilization and poor cyclability, greatly limiting their practical implementation. Herein, we adopted a phosphate-functionalized zirconium metal-organic framework (Zr-MOF) as a sulfur host. With their porous structure, remarkable electrochemical stability, and synthetic versatility, Zr-MOFs present great potential in preventing soluble polysulfides from leaching. Phosphate groups were introduced to the framework post-synthetically since they have shown a strong affinity towards lithium polysulfides and an ability to facilitate Li ion transport. The successful incorporation of phosphate in MOF-808 was demonstrated by a series of techniques including infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy, and X-ray pair distribution function analysis. When employed in batteries, phosphate-functionalized Zr-MOF (MOF-808-PO4) exhibits significantly enhanced sulfur utilization and ion diffusion compared to the parent framework, leading to higher capacity and rate capability. The improved capacity retention and inhibited self-discharge rate also demonstrate effective polysulfide encapsulation utilizing MOF-808-PO4. Furthermore, we explored their potential towards high-density batteries by examining the cycling performance at various sulfur loadings. Our approach to correlate structure with function using hybrid inorganic-organic materials offers new chemical design strategies for advancing battery materials.

3.
J Am Chem Soc ; 141(44): 17891-17899, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31600066

ABSTRACT

Zirconium metal-organic frameworks (Zr-MOFs) are renowned for their extraordinary stability and versatile chemical tunability. Several Zr-MOFs demonstrate a tolerance for missing linker defects, which create "open sites" that can be used to bind guest molecules on the node cluster. Herein, we strategically utilize these sites to stabilize reactive lithium thiophosphate (Li3PS4) within the porous framework for targeted application in lithium-sulfur (Li-S) batteries. Successful functionalization of the Zr-MOF with PS43- is confirmed by an array of techniques including NMR, XPS, and Raman spectroscopy, X-ray pair distribution function analysis, and various elemental analyses. During electrochemical cycling, we find that even a low incorporation extent of lithium thiophosphate in Zr-MOFs improves sulfur utilization and polysulfide encapsulation to deliver a sustainably high capacity over prolonged cycling. The functionalized MOF additives also prevent cell damage under abusive cycling conditions and recover high capacities when the cell is returned to lower charge/discharge rates, imperative for future energy storage devices. Our unique approach marries the promising chemical attributes of the purely inorganic Li3PS4 with the stability and high surface area of MOFs, creating a Li-S cathode architecture with a performance beyond the sum of its component parts. More broadly, this novel functionalization strategy opens new avenues for facile syntheses of "designer materials" where chemical components from discrete disciplines can be united and tailored for specific applications.

4.
J Am Chem Soc ; 141(42): 16706-16725, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31487157

ABSTRACT

TiNb2O7 is a Wadsley-Roth phase with a crystallographic shear structure and is a promising candidate for high-rate lithium ion energy storage. The fundamental aspects of the lithium insertion mechanism and conduction in TiNb2O7, however, are not well-characterized. Herein, experimental and computational insights are combined to understand the inherent properties of bulk TiNb2O7. The results show an increase in electronic conductivity of seven orders of magnitude upon lithiation and indicate that electrons exhibit both localized and delocalized character, with a maximum Curie constant and Li NMR paramagnetic shift near a composition of Li0.60TiNb2O7. Square-planar or distorted-five-coordinate lithium sites are calculated to invert between thermodynamic minima or transition states. Lithium diffusion in the single-redox region (i.e., x ≤ 3 in LixTiNb2O7) is rapid with low activation barriers from NMR and DLi = 10-11 m2 s-1 at the temperature of the observed T1 minima of 525-650 K for x ≥ 0.75. DFT calculations predict that ionic diffusion, like electronic conduction, is anisotropic with activation barriers for lithium hopping of 100-200 meV down the tunnels but ca. 700-1000 meV across the blocks. Lithium mobility is hindered in the multiredox region (i.e., x > 3 in LixTiNb2O7), related to a transition from interstitial-mediated to vacancy-mediated diffusion. Overall, lithium insertion leads to effective n-type self-doping of TiNb2O7 and high-rate conduction, while ionic motion is eventually hindered at high lithiation. Transition-state searching with beyond Li chemistries (Na+, K+, Mg2+) in TiNb2O7 reveals high diffusion barriers of 1-3 eV, indicating that this structure is specifically suited to Li+ mobility.

5.
ACS Appl Mater Interfaces ; 8(10): 6496-503, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26881741

ABSTRACT

Complex manganese oxides have been extensively studied as intercalation Li-ion battery electrodes. The simple oxide MnO has been proposed as a conversion anode material with a theoretical capacity of 756 mAh g(-1) for full reduction to the metal. We report the reaction of MnO with Li using in situ X-ray diffraction and find no sign of crystalline products upon either discharge or charge. However, the absence of reflections, paired with electrochemical impedance spectroscopy, suggests disordered discharge products. We also examine composite electrodes with porous particles of MnO as the active component, with pores generated through the reductive heating of Mn3O4. We compare the behavior of these with more dense MnO powders, including studies of the electrode morphologies pre- and postcyling. We find differences in the first discharge relevant to the utility of such mesostructuring in conversion reaction materials. Specifically, we find this type of mesostructure, which gives advantage in intercalation and pseudocapacitive storage, does not yield the same benefits for conversion reaction systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...