Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 6(11): e13722, 2018 06.
Article in English | MEDLINE | ID: mdl-29890049

ABSTRACT

Erythrocytes must maintain a biconcave discoid shape in order to efficiently deliver oxygen (O2 ) molecules and to recycle carbon dioxide (CO2 ) molecules. The erythrocyte is a small toroidal dielectrophoretic (DEP) electromagnetic field (EMF) driven cell that maintains its zeta potential (ζ) with a dielectric constant (ԑ) between a negatively charged plasma membrane surface and the positively charged adjacent Stern layer. Here, we propose that zeta potential is also driven by both ferroelectric influences (chloride ion) and ferromagnetic influences (serum iron driven). The Golden Ratio, a function of Phi φ, offers a geometrical mathematical measure within the distinct and desired curvature of the red blood cell that is governed by this zeta potential and is required for the efficient recycling of CO2 in our bodies. The Bio-Field Array (BFA) shows potential to both drive/fuel the zeta potential and restore the Golden Ratio in human erythrocytes thereby leading to more efficient recycling of CO2 . Live Blood Analyses and serum CO2 levels from twenty human subjects that participated in immersion therapy sessions with the BFA for 2 weeks (six sessions) were analyzed. Live Blood Analyses (LBA) and serum blood analyses performed before and after the BFA immersion therapy sessions in the BFA pilot study participants showed reversal of erythrocyte rheological alterations (per RBC metric; P = 0.00000075), a morphological return to the Golden Ratio and a significant decrease in serum CO2 (P = 0.017) in these participants. Immersion therapy sessions with the BFA show potential to modulate zeta potential, restore this newly defined Golden Ratio and reduce rheological alterations in human erythrocytes.


Subject(s)
Electromagnetic Fields , Erythrocytes/chemistry , Erythrocytes/metabolism , Adolescent , Adult , Cell Membrane/chemistry , Cell Membrane/metabolism , Feasibility Studies , Female , Humans , Male , Models, Biological , Pilot Projects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...