Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Nat Struct Mol Biol ; 30(7): 1001-1011, 2023 07.
Article in English | MEDLINE | ID: mdl-37291422

ABSTRACT

A wide range of endogenous and xenobiotic organic ions require facilitated transport systems to cross the plasma membrane for their disposition. In mammals, organic cation transporter (OCT) subtypes 1 and 2 (OCT1 and OCT2, also known as SLC22A1 and SLC22A2, respectively) are polyspecific transporters responsible for the uptake and clearance of structurally diverse cationic compounds in the liver and kidneys, respectively. Notably, it is well established that human OCT1 and OCT2 play central roles in the pharmacokinetics and drug-drug interactions of many prescription medications, including metformin. Despite their importance, the basis of polyspecific cationic drug recognition and the alternating access mechanism for OCTs have remained a mystery. Here we present four cryo-electron microscopy structures of apo, substrate-bound and drug-bound OCT1 and OCT2 consensus variants, in outward-facing and outward-occluded states. Together with functional experiments, in silico docking and molecular dynamics simulations, these structures uncover general principles of organic cation recognition by OCTs and provide insights into extracellular gate occlusion. Our findings set the stage for a comprehensive structure-based understanding of OCT-mediated drug-drug interactions, which will prove critical in the preclinical evaluation of emerging therapeutics.


Subject(s)
Organic Cation Transport Proteins , Xenobiotics , Animals , Humans , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 2/metabolism , Cryoelectron Microscopy , Organic Cation Transporter 1/metabolism , Cations/metabolism , Mammals/metabolism
3.
Nat Struct Mol Biol ; 30(6): 824-833, 2023 06.
Article in English | MEDLINE | ID: mdl-37231153

ABSTRACT

Throughout bacteria, archaea and eukarya, certain tRNA transcripts contain introns. Pre-tRNAs with introns require splicing to form the mature anticodon stem loop. In eukaryotes, tRNA splicing is initiated by the heterotetrameric tRNA splicing endonuclease (TSEN) complex. All TSEN subunits are essential, and mutations within the complex are associated with a family of neurodevelopmental disorders known as pontocerebellar hypoplasia (PCH). Here, we report cryo-electron microscopy structures of the human TSEN-pre-tRNA complex. These structures reveal the overall architecture of the complex and the extensive tRNA binding interfaces. The structures share homology with archaeal TSENs but contain additional features important for pre-tRNA recognition. The TSEN54 subunit functions as a pivotal scaffold for the pre-tRNA and the two endonuclease subunits. Finally, the TSEN structures enable visualization of the molecular environments of PCH-causing missense mutations, providing insight into the mechanism of pre-tRNA splicing and PCH.


Subject(s)
Endoribonucleases , RNA Precursors , Humans , RNA Precursors/metabolism , Cryoelectron Microscopy , Endoribonucleases/metabolism , RNA Splicing , Introns , RNA, Transfer/metabolism , Archaea , Eukaryota/genetics , Nucleic Acid Conformation
4.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993738

ABSTRACT

A wide range of endogenous and xenobiotic organic ions require facilitated transport systems to cross the plasma membrane for their disposition 1, 2 . In mammals, organic cation transporter subtypes 1 and 2 (OCT1 and OCT2, also known as SLC22A1 and SLC22A2, respectively) are polyspecific transporters responsible for the uptake and clearance of structurally diverse cationic compounds in the liver and kidneys, respectively 3, 4 . Notably, it is well established that human OCT1 and OCT2 play central roles in the pharmacokinetics, pharmacodynamics, and drug-drug interactions (DDI) of many prescription medications, including metformin 5, 6 . Despite their importance, the basis of polyspecific cationic drug recognition and the alternating access mechanism for OCTs have remained a mystery. Here, we present four cryo-EM structures of apo, substrate-bound, and drug-bound OCT1 and OCT2 in outward-facing and outward-occluded states. Together with functional experiments, in silico docking, and molecular dynamics simulations, these structures uncover general principles of organic cation recognition by OCTs and illuminate unexpected features of the OCT alternating access mechanism. Our findings set the stage for a comprehensive structure-based understanding of OCT-mediated DDI, which will prove critical in the preclinical evaluation of emerging therapeutics.

5.
Science ; 378(6616): eadd1268, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36227998

ABSTRACT

The transient receptor potential melastatin 8 (TRPM8) channel is the primary molecular transducer responsible for the cool sensation elicited by menthol and cold in mammals. TRPM8 activation is controlled by cooling compounds together with the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Our knowledge of cold sensation and the therapeutic potential of TRPM8 for neuroinflammatory diseases and pain will be enhanced by understanding the structural basis of cooling agonist- and PIP2-dependent TRPM8 activation. We present cryo-electron microscopy structures of mouse TRPM8 in closed, intermediate, and open states along the ligand- and PIP2-dependent gating pathway. Our results uncover two discrete agonist sites, state-dependent rearrangements in the gate positions, and a disordered-to-ordered transition of the gate-forming S6-elucidating the molecular basis of chemically induced cool sensation in mammals.


Subject(s)
Cold Temperature , Ion Channel Gating , Phosphatidylinositol 4,5-Diphosphate , Pyrimidinones , TRPM Cation Channels , Thermosensing , Animals , Mice , Cryoelectron Microscopy , Ligands , Menthol/chemistry , Menthol/pharmacology , TRPM Cation Channels/agonists , TRPM Cation Channels/chemistry , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Thermosensing/drug effects , Thermosensing/physiology , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Protein Conformation , Pyrimidinones/chemistry , Pyrimidinones/pharmacology
6.
J Vis Exp ; (186)2022 08 17.
Article in English | MEDLINE | ID: mdl-36063009

ABSTRACT

DNA repair in the context of chromatin is poorly understood. Biochemical studies using nucleosome core particles, the fundamental repeating unit of chromatin, show most DNA repair enzymes remove DNA damage at reduced rates as compared to free DNA. The molecular details on how base excision repair (BER) enzymes recognize and remove DNA damage in nucleosomes have not been elucidated. However, biochemical BER data of nucleosomal substrates suggest the nucleosome presents different structural barriers dependent on the location of the DNA lesion and the enzyme. This indicates the mechanisms employed by these enzymes to remove DNA damage in free DNA may be different than those employed in nucleosomes. Given that the majority of genomic DNA is assembled into nucleosomes, structural information of these complexes is needed. To date, the scientific community lacks detailed protocols to perform technically feasible structural studies of these complexes. Here, we provide two methods to prepare a complex of two genetically fused BER enzymes (Polymerase ß and AP Endonuclease1) bound to a single-nucleotide gap near the entry-exit of the nucleosome for cryo-electron microscopy (cryo-EM) structural determination. Both methods of sample preparation are compatible for vitrifying quality grids via plunge freezing. This protocol can be used as a starting point to prepare other nucleosomal complexes with different BER factors, pioneer transcription factors, and chromatin-modifying enzymes.


Subject(s)
DNA Repair , Nucleosomes , Chromatin , Cryoelectron Microscopy , DNA/genetics , DNA Damage
7.
Nucleic Acids Res ; 50(14): 8290-8301, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35801916

ABSTRACT

Coronaviruses generate double-stranded (ds) RNA intermediates during viral replication that can activate host immune sensors. To evade activation of the host pattern recognition receptor MDA5, coronaviruses employ Nsp15, which is a uridine-specific endoribonuclease. Nsp15 is proposed to associate with the coronavirus replication-transcription complex within double-membrane vesicles to cleave these dsRNA intermediates. How Nsp15 recognizes and processes dsRNA is poorly understood because previous structural studies of Nsp15 have been limited to small single-stranded (ss) RNA substrates. Here we present cryo-EM structures of SARS-CoV-2 Nsp15 bound to a 52nt dsRNA. We observed that the Nsp15 hexamer forms a platform for engaging dsRNA across multiple protomers. The structures, along with site-directed mutagenesis and RNA cleavage assays revealed critical insight into dsRNA recognition and processing. To process dsRNA Nsp15 utilizes a base-flipping mechanism to properly orient the uridine within the active site for cleavage. Our findings show that Nsp15 is a distinctive endoribonuclease that can cleave both ss- and dsRNA effectively.


Subject(s)
COVID-19 , Endoribonucleases , Endoribonucleases/metabolism , Humans , RNA, Double-Stranded/genetics , SARS-CoV-2/genetics , Uridine , Viral Nonstructural Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 119(18): e2201433119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35476528

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is a trimer of S1/S2 heterodimers with three receptor-binding domains (RBDs) at the S1 subunit for human angiotensin-converting enzyme 2 (hACE2). Due to their small size, nanobodies can recognize protein cavities that are not accessible to conventional antibodies. To isolate high-affinity nanobodies, large libraries with great diversity are highly desirable. Dromedary camels (Camelus dromedarius) are natural reservoirs of coronaviruses like Middle East respiratory syndrome CoV (MERS-CoV) that are transmitted to humans. Here, we built large dromedary camel VHH phage libraries to isolate nanobodies that broadly neutralize SARS-CoV-2 variants. We isolated two VHH nanobodies, NCI-CoV-7A3 (7A3) and NCI-CoV-8A2 (8A2), which have a high affinity for the RBD via targeting nonoverlapping epitopes and show broad neutralization activity against SARS-CoV-2 and its emerging variants of concern. Cryoelectron microscopy (cryo-EM) complex structures revealed that 8A2 binds the RBD in its up mode with a long CDR3 loop directly involved in the ACE2 binding residues and that 7A3 targets a deeply buried region that uniquely extends from the S1 subunit to the apex of the S2 subunit regardless of the conformational state of the RBD. At a dose of ≥5 mg/kg, 7A3 efficiently protected transgenic mice expressing hACE2 from the lethal challenge of variants B.1.351 or B.1.617.2, suggesting its therapeutic use against COVID-19 variants. The dromedary camel VHH phage libraries could be helpful as a unique platform ready for quickly isolating potent nanobodies against future emerging viruses.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Camelus , Humans , Mice , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics
9.
bioRxiv ; 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35262076

ABSTRACT

Coronaviruses generate double-stranded (ds) RNA intermediates during viral replication that can activate host immune sensors. To evade activation of the host pattern recognition receptor MDA5, coronaviruses employ Nsp15, which is uridine-specific endoribonuclease. Nsp15 is proposed to associate with the coronavirus replication-transcription complex within double-membrane vesicles to cleave these dsRNA intermediates. How Nsp15 recognizes and processes dsRNA is poorly understood because previous structural studies of Nsp15 have been limited to small single-stranded (ss) RNA substrates. Here we present cryo-EM structures of SARS-CoV-2 Nsp15 bound to a 52nt dsRNA. We observed that the Nsp15 hexamer forms a platform for engaging dsRNA across multiple protomers. The structures, along with site-directed mutagenesis and RNA cleavage assays revealed critical insight into dsRNA recognition and processing. To process dsRNA Nsp15 utilizes a base-flipping mechanism to properly orient the uridine within the active site for cleavage. Our findings show that Nsp15 is a distinctive endoribonuclease that can cleave both ss- and dsRNA effectively.

10.
bioRxiv ; 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34751270

ABSTRACT

With the emergence of SARS-CoV-2 variants, there is urgent need to develop broadly neutralizing antibodies. Here, we isolate two V H H nanobodies (7A3 and 8A2) from dromedary camels by phage display, which have high affinity for the receptor-binding domain (RBD) and broad neutralization activities against SARS-CoV-2 and its emerging variants. Cryo-EM complex structures reveal that 8A2 binds the RBD in its up mode and 7A3 inhibits receptor binding by uniquely targeting a highly conserved and deeply buried site in the spike regardless of the RBD conformational state. 7A3 at a dose of ≥5 mg/kg efficiently protects K18-hACE2 transgenic mice from the lethal challenge of B.1.351 or B.1.617.2, suggesting that the nanobody has promising therapeutic potentials to curb the COVID-19 surge with emerging SARS-CoV-2 variants. ONE-SENTENCE SUMMARY: Dromedary camel ( Camelus dromedarius ) V H H phage libraries were built for isolation of the nanobodies that broadly neutralize SARS-CoV-2 variants.

SELECTION OF CITATIONS
SEARCH DETAIL
...