Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 174: 63-75, 2017 09.
Article in English | MEDLINE | ID: mdl-28623731

ABSTRACT

Since the discovery of cisplatin there has been a continuous pursuit for new metallodrugs showing higher efficacies and lower side effects. In this work, new copper(II) complexes (C1-C6) of Schiff bases derived from pyrazolyl were developed. Through condensation of 5-methyl-1H-pyrazole-3-carbohydrazide with different aromatic aldehydes - pyridoxal, salicylaldehyde, 3-methoxy-2-hydroxybenzaldehyde, 3-ethoxy-2-hydroxybenzaldehyde and 2-hydroxynaphthene-1-carbaldehyde - a set of new pyrazole based "ONO" tridentate Schiff bases were obtained in moderate to good yields - L1-L6, as well as their Cu(II)-complexes. All compounds were characterized by analytical techniques and their molecular formulae established. The antioxidant potential of all compounds was tested, yielding low activity in most cases, with the exception of L1 and C5. The Cu(II) complexes were tested for their aqueous stability, and for their interaction with biological molecules, namely DNA and HSA (human serum albumin), through fluorescence quenching experiments (and electrophoresis for DNA). With the exception of C3, all the synthesized complexes were able to interact with DNA and HSA. Their cytotoxic activity against two cancer cell lines (MCF7 - breast and PC3 - prostate) was also evaluated. Complexes C5 and C6, with larger aromatic systems, showed much higher cytotoxicity (in the low µM range), than C1-C4, as well as IC50 values much lower than cisplatin. For C6 the results suggest that the mechanisms of cell death do not seem to be mediated by apoptosis, through caspases 3/7 activation, but by involving membrane potential and imbalance in physiological elements such as P, K and Ca.


Subject(s)
Apoptosis/drug effects , Copper , Cytotoxins , Organometallic Compounds , Pyrazoles , Copper/chemistry , Copper/pharmacology , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , DNA/chemistry , DNA/metabolism , Humans , MCF-7 Cells , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism
2.
J Inorg Biochem ; 147: 165-76, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25958839

ABSTRACT

The nuclease activity of VO(acac)2 (1, acac = acetylacetone) and its derivatives VO(hd)2 (2, hd = 3,5-heptanedione), VO(Cl-acac)2 (3, Cl-acac = 3-chloro-2,4-pentanedione), VO(Et-acac)2 (4, Et-acac = 3-ethyl-2,4-pentanedione) and VO(Me-acac)2 (5, Me-acac = 3-methyl-2,4-pentanedione), is studied by agarose gel electrophoresis, UV-visible spectroscopy, cyclic and square wave voltammetry and (51)V NMR. The mechanism is shown to be oxidative and associated with the formation of reactive oxygen species (ROS). Hydrolytic cleavage of the phosphodiester bond is also promoted by 1, but at much slower rate which cannot compete with the oxidative mechanism. The generation of ROS is much higher in the presence of phosphate buffer when compared with organic buffers and this was attributed to the formation of a mixed-ligand complex containing phosphate, (V(IV)O)(V(V)O)(acac)2(HnPO4(n-3)), presenting a quasi-reversible voltammetric behavior. The formation of this species was further observed by Electrospray Ionization Mass Spectrometry (ESI-MS). Phosphate being an essential species in most biological media, the importance of the formation of mixed-ligand species in other vanadium systems is emphasized.


Subject(s)
DNA/chemistry , Phosphates/chemistry , Vanadium Compounds/chemistry , Hydrolysis , Oxidation-Reduction , Reactive Oxygen Species/chemistry
3.
J Inorg Biochem ; 147: 134-46, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25858461

ABSTRACT

Five copper(II) complexes, [Cu(sal-Gly)(bipy)](1), [Cu(sal-Gly)(phen)] (2), [Cu(sal-l-Ala)(phen)] (3), [Cu(sal-D-Ala)(phen)] (4), [Cu(sal-l-Phe)(phen)] (5) and five oxidovanadium(IV) complexes, [V(IV)O(sal-Gly)(bipy)] (6), [V(IV)O(sal-Gly)(phen)] (7), [V(IV)O(sal-l-Phe)(H2O)] (8), [V(IV)O(sal-l-Phe)(bipy)] (9), [V(IV)O(sal-l-Phe)(phen)] (10) (sal=salicylaldehyde, bipy=2,2'-bipyridine, phen=1,10-phenanthroline) were synthesized and characterized, and their interaction with DNA was evaluated by different techniques: gel electrophoresis, fluorescence, UV-visible and circular dichroism spectroscopy. The complexes interact with calf-thymus DNA and efficiently cleave plasmid DNA in the absence (only 2 and 5) and/or presence of additives. The cleavage ability is concentration-dependent as well as metal and ligand-dependent. Moreover, DNA binding experiments show that the phen-containing Cu(II) and V(IV)O compounds display stronger DNA interaction ability than the corresponding bipy analogues. The complexes present cytotoxic activity against human ovarian (A2780) and breast (MCF7) carcinoma cells. Cell-growth inhibition (IC50) of compounds 1, 2 and 5 in human promyelocytic leukemia (HL60) and human cervical cancer (HeLa) cells were also determined. The copper complexes show much higher cytotoxic activity than the corresponding vanadium complexes and the reference drug cisplatin (except for the sal-Gly complexes); namely, the phenanthroline copper complexes 2-5 are ca. 10-fold more cytotoxic than cisplatin and more cytotoxic than their bipyridine analogues.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/chemistry , Intercalating Agents/pharmacology , Vanadium Compounds/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Coordination Complexes/chemical synthesis , Coordination Complexes/toxicity , DNA/chemistry , HeLa Cells , Humans , Hydrolysis , Intercalating Agents/chemical synthesis , Intercalating Agents/toxicity , MCF-7 Cells
4.
Biometals ; 24(6): 1153-68, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21755303

ABSTRACT

The complex of vanadyl(IV) cation with oxodiacetate, VO(oda) caused an inhibitory effect on the proliferation of the human colon adenocarcinoma cell line Caco-2 in the range of 25-100 µM (P < 0.001). This inhibition was partially reversed by scavengers of free radicals. The difference in cell proliferation in the presence and the absence of scavengers was statistically significant in the range of 50-100 µM (P < 0.05). VO(oda) altered lysosomal and mitochondria metabolisms (neutral red and MTT bioassays) in a dose-response manner from 10 µM (P < 0.001). Morphological studies showed important transformations that correlated with the disassembly of actin filaments and a decrease in the number of cells in a dose response manner. Moreover, VO(oda) caused statistically significant genotoxic effects on Caco-2 cells in the low range of concentration (5-25 µM) (Comet assay). Increment in the oxidative stress and a decrease in the GSH level are the main cytotoxic mechanisms of VO(oda). These effects were partially reversed by scavengers of free radicals in the range of 50-100 µM (P < 0.05). Besides, VO(oda) interacted with plasmidic DNA causing single and double strand cleavage, probably through the action of free radical species. Altogether, these results suggest that VO(oda) is a good candidate to be evaluated for alternative therapeutics in cancer treatment.


Subject(s)
Acetates/toxicity , Acetates/therapeutic use , Caco-2 Cells/drug effects , Neoplasms/drug therapy , Vanadates/toxicity , Vanadates/therapeutic use , Acetates/chemistry , Actins/metabolism , Animals , Caco-2 Cells/cytology , Cell Proliferation/drug effects , Comet Assay , Cytoskeleton/drug effects , DNA Damage , Dose-Response Relationship, Drug , Glutathione/metabolism , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Vanadates/chemistry
5.
J Biol Inorg Chem ; 16(4): 653-68, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21399988

ABSTRACT

A new complex of the oxovanadium(IV) cation with the flavolignan silibinin has been synthesized and characterized. Vanadium compounds show interesting biological and pharmacological properties and some of them display antitumoral actions. Flavonoids are part of a larger group of antioxidant compounds called polyphenols which may inhibit the proliferation and growth of cancer cells. The antioxidant and antitumoral effects of silibinin and its oxovanadium(IV) complex were investigated. Silibinin acted as a very strong antioxidant and its complexation with oxovanadium(IV) improved this behavior. Besides, the generation of reactive oxygen species (ROS) by this compound was favored in tumoral (UMR106) cells and correlated with the deleterious behavior in the proliferation of this cell line. Conversely, silibinin did not exert any effect on the proliferation of normal osteoblasts (MC3T3E1). The cytotoxic action and ROS generation of the oxovanadium(IV) complex was more effective in tumoral cells. This behavior was not consistent with cleaving DNA of plasmid DNA pA1 because no significant cleaving activity was observed in both cases. These results suggest that the main deleterious mechanisms may take place through cytotoxic effects more than genotoxic actions. A comparison with our own findings on the behavior of other flavonoids and their vanadyl(IV) complex has also been performed.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , DNA Cleavage/drug effects , Organometallic Compounds/pharmacology , Silymarin/pharmacology , Vanadates/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Electron Spin Resonance Spectroscopy , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Plasmids/drug effects , Rats , Reactive Oxygen Species/metabolism , Silybin , Silymarin/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Vanadates/chemistry
6.
J Inorg Biochem ; 103(4): 622-32, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19230978

ABSTRACT

The DNA cleavage activity of several beta-diketonate vanadyl complexes is examined. Vanadyl acetylacetonate, V(IV)O(acac)(2), 1, shows a remarkable activity in degrading plasmid DNA in the absence of any activating agents, air and photoirradiation. The cleaving activity of several related complexes V(IV)O(hd)(2) (2, Hhd=3,5-heptanedione), V(IV)O(acac-NH(2))(2) (3, Hacac-NH(2)=acetoacetamide) and V(IV)O(acac-NMe(2))(2) (4, Hacac-NMe(2)=N,N-dimethylacetoacetamide) is also evaluated. It is shown that 2 exhibits an activity similar to 1, while 3 and 4 are much less efficient cleaving agents. The different activity of the complexes is related to their stability towards hydrolysis in aqueous solution, which follows the order 1 approximately 2>>3 approximately 4. The nature of the pH buffer was also found to be determinant in the nuclease activity of 1 and 2. In a phosphate buffered medium DNA cleavage by these agents is much more efficient than in tris, hepes, mes or mops buffers. The reaction seems to take place through a mixed mechanism, involving the formation of reactive oxygen species (ROS), namely OH radicals, and possibly also direct cleavage at phosphodiester linkages induced by the vanadium complexes.


Subject(s)
DNA Cleavage , DNA/chemistry , Hydroxybutyrates/chemistry , Pentanones/chemistry , Circular Dichroism , Electron Spin Resonance Spectroscopy , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Microscopy, Atomic Force , Reactive Oxygen Species/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...