Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 28(11): 2020-2034.e12, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34525348

ABSTRACT

The division potential of individual stem cells and the molecular consequences of successive rounds of proliferation remain largely unknown. Here, we developed an inducible cell division counter (iCOUNT) that reports cell division events in human and mouse tissues in vitro and in vivo. Analyzing cell division histories of neural stem/progenitor cells (NSPCs) in the developing and adult brain, we show that iCOUNT can provide novel insights into stem cell behavior. Further, we use single-cell RNA sequencing (scRNA-seq) of iCOUNT-labeled NSPCs and their progenies from the developing mouse cortex and forebrain-regionalized human organoids to identify functionally relevant molecular pathways that are commonly regulated between mouse and human cells, depending on individual cell division histories. Thus, we developed a tool to characterize the molecular consequences of repeated cell divisions of stem cells that allows an analysis of the cellular principles underlying tissue formation, homeostasis, and repair.


Subject(s)
Neural Stem Cells , Animals , Brain , Cell Division , Cell Proliferation , Mice , Organoids , Sequence Analysis, RNA
2.
Proc Natl Acad Sci U S A ; 116(51): 25688-25696, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31772009

ABSTRACT

Neural stem cells (NSCs) generate neurons and glial cells throughout embryonic and postnatal brain development. The role of S-palmitoylation (also referred to as S-acylation), a reversible posttranslational lipid modification of proteins, in regulating the fate and activity of NSCs remains largely unknown. We used an unbiased screening approach to identify proteins that are S-acylated in mouse NSCs and showed that bone morphogenic protein receptor 1a (BMPR1a), a core mediator of BMP signaling, is palmitoylated. Genetic manipulation of S-acylated sites affects the localization and trafficking of BMPR1a and leads to altered BMP signaling. Strikingly, defective palmitoylation of BMPR1a modulates NSC function within the mouse brain, resulting in enhanced oligodendrogenesis. Thus, we identified a mechanism regulating the behavior of NSCs and provided the framework to characterize dynamic posttranslational lipid modifications of proteins in the context of NSC biology.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Lipoylation/physiology , Neural Stem Cells , Neurogenesis/physiology , Animals , Bone Morphogenetic Protein Receptors, Type I/chemistry , Bone Morphogenetic Protein Receptors, Type I/metabolism , Cells, Cultured , Mice , Neural Stem Cells/chemistry , Neural Stem Cells/cytology , Neural Stem Cells/metabolism
3.
Mol Neurobiol ; 54(4): 3062-3077, 2017 05.
Article in English | MEDLINE | ID: mdl-27037575

ABSTRACT

Hexanucleotide repeat expansions in the C9ORF72 gene are causally associated with frontotemporal lobar dementia (FTLD) and/or amyotrophic lateral sclerosis (ALS). The physiological function of the normal C9ORF72 protein remains unclear. In this study, we characterized the subcellular localization of C9ORF72 to processing bodies (P-bodies) and its recruitment to stress granules (SGs) upon stress-related stimuli. Gain of function and loss of function experiments revealed that the long isoform of C9ORF72 protein regulates SG assembly. CRISPR/Cas9-mediated knockdown of C9ORF72 completely abolished SG formation, negatively impacted the expression of SG-associated proteins such as TIA-1 and HuR, and accelerated cell death. Loss of C9ORF72 expression further compromised cellular recovery responses after the removal of stress. Additionally, mimicking the pathogenic condition via the expression of hexanucleotide expansion upstream of C9ORF72 impaired the expression of the C9ORF72 protein, caused an abnormal accumulation of RNA foci, and led to the spontaneous formation of SGs. Our study identifies a novel function for normal C9ORF72 in SG assembly and sheds light into how the mutant expansions might impair SG formation and cellular-stress-related adaptive responses.


Subject(s)
Cytoplasmic Granules/metabolism , Proteins/metabolism , Stress, Physiological , Animals , Antibody Specificity/immunology , C9orf72 Protein , Cell Line, Tumor , Cell Nucleus/metabolism , DNA Repeat Expansion/genetics , Inclusion Bodies/metabolism , Mice , Neurons/metabolism , Protein Transport , Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...