Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 11: 1168330, 2023.
Article in English | MEDLINE | ID: mdl-37234478

ABSTRACT

Growth factors are the key regulators that promote tissue regeneration and healing processes. While the effects of individual growth factors are well documented, a combination of multiple secreted growth factors underlies stem cell-mediated regeneration. To avoid the potential dangers and labor-intensive individual approach of stem cell therapy while maintaining their regeneration-promoting effects based on multiple secreted growth factors, we engineered a "mix-and-match" combinatorial platform based on a library of cell lines producing growth factors. Treatment with a combination of growth factors secreted by engineered mammalian cells was more efficient than with individual growth factors or even stem cell-conditioned medium in a gap closure assay. Furthermore, we implemented in a mouse model a device for allogenic cell therapy for an in situ production of growth factors, where it improved cutaneous wound healing. Augmented bone regeneration was achieved on calvarial bone defects in rats treated with a cell device secreting IGF, FGF, PDGF, TGF-ß, and VEGF. In both in vivo models, the systemic concentration of secreted factors was negligible, demonstrating the local effect of the regeneration device. Finally, we introduced a genetic switch that enables temporal control over combinations of trophic factors released at different stages of regeneration mimicking the maturation of natural wound healing to improve therapy and prevent scar formation.

2.
Cancers (Basel) ; 14(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36011020

ABSTRACT

Nano-dimensional materials have become a focus of multiple clinical applications due to their unique physicochemical properties. Magnetic nanoparticles represent an important class of nanomaterials that are widely studied for use as magnetic resonance (MR) contrast and drug delivery agents, especially as they can be detected and manipulated remotely. Using magnetic cobalt ferrite spinel (MCFS) nanoparticles, this study was aimed at developing a multifunctional drug delivery platform with MRI capability for use in cancer treatment. We found that MCFS nanoparticles demonstrated outstanding properties for contrast MRI (r1 = 22.1 s-1mM-1 and r2 = 499 s-1mM-1) that enabled high-resolution T1- and T2-weighted MRI-based signal detection. Furthermore, MCFS nanoparticles were used for the development of a multifunctional targeted drug delivery platform for cancer treatment that is concurrently empowered with the MR contrast properties. Their therapeutic effect in systemic chemotherapy and unique MRI double-contrast properties were confirmed in vivo using a breast cancer mouse tumor model. Our study thus provides an empirical basis for the development of a novel multimodal composite drug delivery system for anticancer therapy combined with noninvasive MRI capability.

3.
Cell Mol Life Sci ; 79(1): 34, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34989869

ABSTRACT

New therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention. Our results indicate that the triazole-based selective reversible inhibitor of cathepsin X named Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) significantly reduces tumor progression, both in vitro in cell-based functional assays and in vivo in two independent tumor mouse models: the FVB/PyMT transgenic and MMTV-PyMT orthotopic breast cancer mouse models. One of the mechanisms by which cathepsin X contributes to cancer progression is the compensation of cathepsin-B activity loss. Our results confirm that cathepsin-B inhibition is compensated by an increase in cathepsin X activity and protein levels. Furthermore, the simultaneous inhibition of both cathepsins B and X with potent, selective, reversible inhibitors exerted a synergistic effect in impairing processes of tumor progression in in vitro cell-based assays of tumor cell migration and spheroid growth. Taken together, our data demonstrate that Z9 impairs tumor progression both in vitro and in vivo and can be used in combination with other peptidase inhibitors as an innovative approach to overcome resistance to antipeptidase therapy.


Subject(s)
Cathepsin B/antagonists & inhibitors , Cathepsins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Tumor Burden/drug effects , Animals , Cathepsin B/metabolism , Cathepsins/genetics , Cathepsins/metabolism , Cell Death/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor/methods , Enzyme Inhibitors/chemistry , Humans , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice, Transgenic , Neoplasm Invasiveness , Neutrophil Infiltration/drug effects
4.
FEBS J ; 287(23): 5148-5166, 2020 12.
Article in English | MEDLINE | ID: mdl-32319717

ABSTRACT

L-leucyl-leucine methyl ester (LLOMe) is a lysosomotropic detergent, which was evaluated in clinical trials in graft-vs-host disease because it very efficiently killed monocytic cell lines. It was also shown to efficiently trigger apoptosis in cancer cells, suggesting that the drug might have potential in anticancer therapy. Using U-937 and THP-1 promonocytes as models for monocytic cells, U-87-MG and HeLa cells as models for cancer cells, and noncancerous HEK293 cells, we show that the drug triggers rapid cathepsin C-dependent lysosomal membrane permeabilization, followed by the release of other cysteine cathepsins into the cytosol and subsequent apoptosis. However, monocytes were found to be far more sensitive to the drug than the cancer and noncancer cells, which is most likely a consequence of the much higher intracellular levels of cathepsin C-the most upstream molecule in the pathway-in monocytic cell lines as compared to cancer cells. Overexpression of cathepsin C in HEK293 cells substantially enhances their sensitivity to the drug, consistent with the crucial role of cathepsin C. Major involvement of cysteine cathepsins B, S, and L in the downstream signaling pathway to mitochondrial cell death was confirmed in two gene ablation models, including the ablation of the major cytosolic inhibitor of cysteine cathepsins, stefin B, in primary mouse cancer cells, and simultaneous ablation of two major cathepsins, B and L, in mouse embryonic fibroblasts (MEFs). Deletion of stefin B resulted in sensitizing primary murine breast cancer cells to cell death without affecting the release of cathepsins, whereas simultaneous ablation of cathepsins B and L largely protected MEFs against cell death. However, due to the extreme sensitivity of monocytes to LLOMe, it appears that the drug may not be suitable for anticancer therapy due to risk of systemic toxicity.


Subject(s)
Apoptosis , Cathepsin C/metabolism , Dipeptides/pharmacology , Immunosuppressive Agents/pharmacology , Monocytes/drug effects , Neoplasms/drug therapy , Animals , Cells, Cultured , Cytosol/drug effects , Cytosol/metabolism , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Monocytes/metabolism , Neoplasms/metabolism , Neoplasms/pathology
5.
Oncotarget ; 8(43): 73793-73809, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-29088746

ABSTRACT

Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro, indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-ß pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.

6.
Microb Cell Fact ; 14: 181, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26577444

ABSTRACT

BACKGROUND: In vivo imaging of orally administered lactic acid bacteria (LAB) and commensal bacteria in mice is shown to provide information on the spatial and temporal distribution of bacteria in the gastrointestinal tract. The bacteria can be detected and monitored using bioluminescence or near-infrared fluorescence. RESULTS: Fluorescence imaging of bacteria was established by expressing the infrared fluorescent protein IRFP713 in Lactococcus lactis, Lactobacillus plantarum and Escherichia coli. All three bacterial species were monitored in live mice and no major differences in transit time were observed. Bacteria passed through the stomach and small intestine in 1 h and the majority were secreted from the large intestine after 6-8 h. Intestinal localization of bacteria was confirmed by imaging the isolated intestines and culturing the intestinal content. The use of fluorescence tomography for spatial localization of fluorescent bacteria has been established. The expression of an additional infrared fluorescent protein IRFP682 enabled concomitant detection of two bacterial populations in live mice. CONCLUSIONS: The present work provides a methodological basis for future studies of probiotic and theranostic actions of LAB in mouse disease models.


Subject(s)
Escherichia coli/metabolism , Lactobacillus plantarum/metabolism , Lactococcus lactis/metabolism , Luminescent Proteins/metabolism , Administration, Oral , Animals , Intestines/microbiology , Intestines/pathology , Luminescent Proteins/genetics , Mice , Optical Imaging , Time-Lapse Imaging
7.
Mol Ther Nucleic Acids ; 4: e239, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25942402

ABSTRACT

Endoglin (CD105), a transforming growth factor (TGF)-ß coreceptor, and endothelin-1, a vasoconstrictor peptide, are both overexpressed in tumor endothelial and melanoma cells. Their targeting is therefore a promising therapeutic approach for melanoma tumors. The aim of our study was to construct a eukaryotic expression plasmid encoding the shRNA molecules against CD105 under the control of endothelin-1 promoter and to evaluate its therapeutic potential both in vitro in murine B16F10-luc melanoma and SVEC4-10 endothelial cells and in vivo in mice bearing highly metastatic B16F10-luc tumors. Plasmid encoding shRNA against CD105 under the control of the constitutive U6 promoter was used as a control. We demonstrated the antiproliferative and antiangiogenic effects of both plasmids in SVEC4-10 cells, as well as a moderate antitumor and pronounced antimetastatic effect in B16F10-luc tumors in vivo. Our results provide evidence that targeting melanoma with shRNA molecules against CD105 under the control of endothelin-1 promoter is a feasible and effective treatment, especially for the reduction of metastatic spread.

8.
Oncotarget ; 6(22): 19027-42, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-25848918

ABSTRACT

Cathepsin B is a ubiquitously expressed lysosomal cysteine protease that participates in protein turnover within lysosomes. However, its protein and activity levels have been shown to be increased in cancer. Cathepsin B endopeptidase activity is involved in the degradation of extracellular matrix, a process that promotes tumor invasion, metastasis and angiogenesis. Previously, we reported an established antibiotic nitroxoline as a potent and selective inhibitor of cathepsin B. In the present study, we elucidated its anti-tumor properties in in vitro and in vivo tumor models. Tumor and endothelial cell lines with high levels of active cathepsin B were selected for functional analysis of nitroxoline in vitro. Nitroxoline significantly reduced extracellular DQ-collagen IV degradation by all evaluated cancer cell lines using spectrofluorimetry. Nitroxoline also markedly decreased tumor cell invasion monitored in real time and reduced the invasive growth of multicellular tumor spheroids, used as a 3D in vitro model of tumor invasion. Additionally, endothelial tube formation was significantly reduced by nitroxoline in an in vitro angiogenesis assay. Finally, nitroxoline significantly abrogated tumor growth, angiogenesis and metastasis in vivo in LPB fibrosarcoma and MMTV-PyMT breast cancer mouse models. Overall, our results designate nitroxoline as a promising drug candidate for anti-cancer treatment.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Cathepsin B/antagonists & inhibitors , Nitroquinolines/pharmacology , Animals , Case-Control Studies , Cathepsin B/metabolism , Cell Growth Processes/drug effects , Cell Line, Tumor , Disease Progression , Endothelial Cells/drug effects , Female , Fibrosarcoma/blood supply , Fibrosarcoma/drug therapy , Fibrosarcoma/enzymology , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Metastasis , Random Allocation , Sarcoma, Experimental/blood supply , Sarcoma, Experimental/drug therapy , Sarcoma, Experimental/enzymology , Spheroids, Cellular
9.
J Biol Chem ; 289(46): 31736-31750, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25288807

ABSTRACT

Stefin B (cystatin B) is an endogenous cysteine cathepsin inhibitor, and the loss-of-function mutations in the stefin B gene were reported in patients with Unverricht-Lundborg disease (EPM1). In this study we demonstrated that stefin B-deficient (StB KO) mice were significantly more sensitive to the lethal LPS-induced sepsis and secreted higher amounts of pro-inflammatory cytokines IL-1ß and IL-18 in the serum. We further showed that increased caspase-11 gene expression and better pro-inflammatory caspase-1 and -11 activation determined in StB KO bone marrow-derived macrophages resulted in enhanced IL-1ß processing. Pretreatment of macrophages with the cathepsin inhibitor E-64d did not affect secretion of IL-1ß, suggesting that the increased cathepsin activity determined in StB KO bone marrow-derived macrophages is not essential for inflammasome activation. Upon LPS stimulation, stefin B was targeted into the mitochondria, and the lack of stefin B resulted in the increased destabilization of mitochondrial membrane potential and mitochondrial superoxide generation. Collectively, our study demonstrates that the LPS-induced sepsis in StB KO mice is dependent on caspase-11 and mitochondrial reactive oxygen species but is not associated with the lysosomal destabilization and increased cathepsin activity in the cytosol.


Subject(s)
Cystatin B/physiology , Endotoxemia/metabolism , Gene Expression Regulation , Inflammation/metabolism , Animals , Caspases/metabolism , Caspases, Initiator , Escherichia coli/metabolism , Inflammasomes/metabolism , Lipopolysaccharides , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism
10.
Inorg Chem ; 52(15): 9039-52, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23886077

ABSTRACT

Continuing the study of the physicochemical and biological properties of ruthenium-quinolone adducts, four novel complexes with the general formula [Ru([9]aneS3)(dmso-κS)(quinolonato-κ(2)O,O)](PF6), containing the quinolones levofloxacin (1), nalidixic acid (2), oxolinic acid (3), and cinoxacin (4), were prepared and characterized in solid state as well as in solution. Contrary to their organoruthenium analogues, these complexes are generally relatively stable in aqueous solution as substitution of the dimethylsulfoxide (dmso) ligand is slow and not quantitative, and a minor release of the quinolonato ligand is observed only in the case of 4. The complexes bind to serum proteins displaying relatively high binding constants. DNA binding was studied using UV-vis spectroscopy, cyclic voltammetry, and performing viscosity measurements of CT DNA solutions in the presence of complexes 1-4. These experiments show that the ruthenium complexes interact with DNA via intercalation. Possible electrostatic interactions occur in the case of compound 4, which also shows the most pronounced rate of hydrolysis. Compounds 2 and 4 also exhibit a weak inhibition of cathepsins B and S, which are involved in the progression of a number of diseases, including cancer. Furthermore, complex 2 displayed moderate cytotoxicity when tested on the HeLa cell line.


Subject(s)
Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Quinolones/chemistry , Ruthenium/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cathepsins/antagonists & inhibitors , DNA/metabolism , Ethidium/metabolism , HeLa Cells , Humans , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/metabolism , Serum Albumin, Bovine/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...