Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(1): 58-64, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34965360

ABSTRACT

Two-dimensional (2D) semiconductors are primed to realize a variety of photonic devices that rely on the transient properties of photogenerated charges, yet little is known on the change of the refractive index. The associated optical phase changes can be beneficial or undesired depending on the application, but require proper quantification. Measuring optical phase modulation of dilute 2D materials is, however, not trivial with common methods. Here, we demonstrate that 2D colloidal CdSe quantum wells, a useful model system, can modulate the phase of light across a broad spectrum using a femtosecond interferometry method. Next, we develop a toolbox to calculate the time-dependent refractive index of colloidal 2D materials from widely available transient absorption experiments using a modified effective medium algorithm. Our results show that the excitonic features of 2D materials result in broadband, ultrafast, and sizable phase modulation, even extending to the near infrared because of intraband transitions.

2.
Adv Mater ; 30(52): e1803379, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30370614

ABSTRACT

The generation and recombination of charge carriers in semiconductors through photons controls photovoltaic and light-emitting diode operation. Understanding of these processes in hybrid perovskites has advanced, but remains incomplete. Using femtosecond transient absorption and photoluminescence, it is observed that the luminescence signal shows a rise over 2 ps, while initially hot photogenerated carriers cool to the band edge. This indicates that the luminescence from hot carriers is weaker than that of cold carriers, as expected from strongly radiative transitions in direct gap semiconductors. It is concluded that the electrons and holes show a strong overlap in momentum space, despite recent proposals that Rashba splitting leads to a band offset suppressing such an overlap. A number of possible resolutions to this, including lattice dynamics that remove the Rashba splitting at room temperature, and localization of luminescence events to length scales below 10 nm are considered.

3.
Nat Commun ; 6: 8420, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26404048

ABSTRACT

Metal-halide perovskites are at the frontier of optoelectronic research due to solution processability and excellent semiconductor properties. Here we use transient absorption spectroscopy to study hot-carrier distributions in CH3NH3PbI3 and quantify key semiconductor parameters. Above bandgap, non-resonant excitation creates quasi-thermalized carrier distributions within 100 fs. During carrier cooling, a sub-bandgap transient absorption signal arises at ∼ 1.6 eV, which is explained by the interplay of bandgap renormalization and hot-carrier distributions. At higher excitation densities, a 'phonon bottleneck' substantially slows carrier cooling. This effect indicates a low contribution from inelastic carrier-impurity or phonon-impurity scattering in these polycrystalline materials, which supports high charge-carrier mobilities. Photoinduced reflectivity changes distort the shape of transient absorption spectra and must be included to extract physical constants. Using a simple band-filling model that accounts for these changes, we determine a small effective mass of mr=0.14 mo, which agrees with band structure calculations and high photovoltaic performance.

4.
J Phys Chem Lett ; 6(9): 1573-6, 2015 May 07.
Article in English | MEDLINE | ID: mdl-26263316

ABSTRACT

A new synthetic method was developed to produce a range of transition-metal (Mn, Ni, and Cu) doped silicon nanocrystals (Si NCs). The synthesis produces monodisperse undoped and doped Si NCs with comparable average sizes as shown by transmission electron microscopy (TEM). Dopant composition was confirmed by EDX (energy dispersive X-ray spectroscopy). The optical properties of undoped and doped were compared and contrasted using absorption (steady-state and transient) and photoluminescence spectroscopy. Doped Si NCs demonstrated unique dopant-dependent optical properties compared to undoped Si NCs such as enhanced subgap absorption, and 40 nm shifts in the emission. Transient absorption (TA) measurements showed that photoexcitations in doped Si NCs relaxed via dopant states not present in undoped Si NCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...