Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 18(4): e1010006, 2022 04.
Article in English | MEDLINE | ID: mdl-35389981

ABSTRACT

Many pathogenic missense mutations are found in protein positions that are neither well-conserved nor fall in any known functional domains. Consequently, we lack any mechanistic underpinning of dysfunction caused by such mutations. We explored the disruption of allosteric dynamic coupling between these positions and the known functional sites as a possible mechanism for pathogenesis. In this study, we present an analysis of 591 pathogenic missense variants in 144 human enzymes that suggests that allosteric dynamic coupling of mutated positions with known active sites is a plausible biophysical mechanism and evidence of their functional importance. We illustrate this mechanism in a case study of ß-Glucocerebrosidase (GCase) in which a vast majority of 94 sites harboring Gaucher disease-associated missense variants are located some distance away from the active site. An analysis of the conformational dynamics of GCase suggests that mutations on these distal sites cause changes in the flexibility of active site residues despite their distance, indicating a dynamic communication network throughout the protein. The disruption of the long-distance dynamic coupling caused by missense mutations may provide a plausible general mechanistic explanation for biological dysfunction and disease.


Subject(s)
Mutation, Missense , Proteins , Catalytic Domain/genetics , Humans , Mutation , Mutation, Missense/genetics , Proteins/chemistry
2.
PLoS Comput Biol ; 14(11): e1006626, 2018 11.
Article in English | MEDLINE | ID: mdl-30496278

ABSTRACT

The conformational dynamics of proteins is rarely used in methodologies used to predict the impact of genetic mutations due to the paucity of three-dimensional protein structures as compared to the vast number of available sequences. Until now a three-dimensional (3D) structure has been required to predict the conformational dynamics of a protein. We introduce an approach that estimates the conformational dynamics of a protein, without relying on structural information. This de novo approach utilizes coevolving residues identified from a multiple sequence alignment (MSA) using Potts models. These coevolving residues are used as contacts in a Gaussian network model (GNM) to obtain protein dynamics. B-factors calculated using sequence-based GNM (Seq-GNM) are in agreement with crystallographic B-factors as well as theoretical B-factors from the original GNM that utilizes the 3D structure. Moreover, we demonstrate the ability of the calculated B-factors from the Seq-GNM approach to discriminate genomic variants according to their phenotypes for a wide range of proteins. These results suggest that protein dynamics can be approximated based on sequence information alone, making it possible to assess the phenotypes of nSNVs in cases where a 3D structure is unknown. We hope this work will promote the use of dynamics information in genetic disease prediction at scale by circumventing the need for 3D structures.


Subject(s)
Acyl-CoA Dehydrogenase/chemistry , Computational Biology/methods , Disease Susceptibility , Neurons/metabolism , Protein Isoforms , Proteins/chemistry , Animals , Computer Simulation , Cytochrome Reductases/chemistry , Genomics , Humans , Imaging, Three-Dimensional , Molecular Conformation , Muramidase/chemistry , Normal Distribution , Phenotype , Protein Conformation , ROC Curve , Rats
3.
Curr Opin Struct Biol ; 35: 135-42, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26684487

ABSTRACT

Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine.


Subject(s)
Evolution, Molecular , Genomics/methods , Medicine/methods , Protein Interaction Mapping/methods , Proteins/chemistry , Proteins/metabolism , Disease/genetics , Humans , Proteins/genetics
4.
Proteins ; 83(3): 428-35, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25546381

ABSTRACT

Recent studies have shown that the protein interface sites between individual monomeric units in biological assemblies are enriched in disease-associated non-synonymous single nucleotide variants (nsSNVs). To elucidate the mechanistic underpinning of this observation, we investigated the conformational dynamic properties of protein interface sites through a site-specific structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi measures the dynamic resilience of a single residue to perturbations that occurred in the rest of the protein structure and identifies sites contributing the most to functionally critical dynamics. Analysis of dfi profiles of over a thousand positions harboring variation revealed that amino acid residues at interfaces have lower average dfi (31%) than those present at non-interfaces (50%), which means that protein interfaces have less dynamic flexibility. Interestingly, interface sites with disease-associated nsSNVs have significantly lower average dfi (23%) as compared to those of neutral nsSNVs (42%), which directly relates structural dynamics to functional importance. We found that less conserved interface positions show much lower dfi for disease nsSNVs as compared to neutral nsSNVs. In this case, dfi is better as compared to the accessible surface area metric, which is based on the static protein structure. Overall, our proteome-wide conformational dynamic analysis indicates that certain interface sites play a critical role in functionally related dynamics (i.e., those with low dfi values), therefore mutations at those sites are more likely to be associated with disease.


Subject(s)
Disease/genetics , Polymorphism, Single Nucleotide , Protein Conformation , Proteins/chemistry , Proteins/genetics , Databases, Protein , Humans , Models, Molecular , Pliability , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/physiology , Proteomics , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...