Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 162: 80-108, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30419493

ABSTRACT

Lipoxins (LXs) are endogenously generated eicosanoids with potent bio-actions consistent with attenuation of inflammation. The costly synthesis and metabolic instability of LXs may limit their therapeutic potential. Here we report the synthesis and characterization of novel imidazole-/oxazole-containing synthetic-LX-mimetics (sLXms). The key steps of asymmetric synthesis of putative sLXms include a Suzuki reaction and an asymmetric ketone reduction. The effect of the novel compounds on inflammatory responses was assessed using a human monocyte cell line stably expressing a Nuclear Factor Kappa B (NFkB) reporter gene, by investigating downstream cytokine secretion. The potential interaction of the imidazoles/oxazoles with the molecular target of LXs, i.e. G-protein coupled receptor (GPCR) Formyl Peptide Receptor 2 (ALX/FPR2) was investigated using a cell system where ALX/FPR2 is coupled to the Gαq subunit and receptor interaction determined by mobilisation of intracellular calcium. In vivo anti-inflammatory effects were assessed using a murine zymosan-induced peritonitis model. Overall, structure-activity relationship (SAR) studies demonstrated that the (R)-epimer of 6C-dimethyl-imidazole (1R)-11 was the most potent and efficient anti-inflammatory agent, among the ten compounds tested. This molecule significantly attenuated LPS-induced NFkB activity, reduced the release of several pro-inflammatory cytokines and inhibited peritonitis-associated neutrophil infiltration in vivo. The underlying mechanism for those actions appeared to be through FPR2 activation. These data support the therapeutic potential of imidazole-containing sLXms in the context of novel inflammatory regulators.


Subject(s)
Imidazoles/chemistry , Lipoxins/chemical synthesis , Oxazoles/chemistry , Animals , Cell Line , Humans , Inflammation/drug therapy , Lipoxins/pharmacology , Mice , Molecular Mimicry , Monocytes/drug effects , Monocytes/metabolism , NF-kappa B/metabolism , Peritonitis/drug therapy , Receptors, Formyl Peptide/metabolism
2.
Org Biomol Chem ; 16(38): 6935-6960, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30226509

ABSTRACT

The vioprolides are novel depsipeptides that have not been synthesized. However, they have been identified as important targets for synthesis because of their novel biological activities and challenging chemical structures. Following early work on the synthesis of a modified tetrapeptide that contained both the (E)-dehydrobutyrine and thiazoline components of vioprolide D, problems were encountered in taking an (E)-dehydrobutyrine containing intermediate further into the synthesis. A second approach to vioprolides and analogues was therefore investigated in which (E)- and (Z)-dehydrobutyrines were to be introduced by selenoxide elimination very late in the synthesis. A convergent approach to advanced macrocyclic precursors of the vioprolides was then completed using a modified hexapeptide and a dipeptidyl glycerate. In this work, it was necessary to protect the 2-hydroxyl group of the glycerate as its acetate and not as its 2,2,2-trichloroethoxycarbonate. Preliminary studies were carried out on the introduction of the required dehydrobutyrine and thiazoline components into advanced intermediates.

SELECTION OF CITATIONS
SEARCH DETAIL
...