Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 205: 110994, 2020 04.
Article in English | MEDLINE | ID: mdl-31982812

ABSTRACT

The Mycobacterium tuberculosis (Mtb) genome encodes 20 different cytochrome P450 enzymes (CYPs), many of which serve essential biosynthetic roles. CYP51B1, the Mtb version of eukaryotic sterol demethylase, remains a potential therapeutic target. The binding of three drug fragments containing nitrogen heterocycles to CYP51B1 is studied here by continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) techniques to determine how each drug fragment binds to the heme active-site. All three drug fragments form a mixture of complexes, some of which retain the axial water ligand from the resting state. Hyperfine sublevel correlation spectroscopy (HYSCORE) and electron-nuclear double resonance spectroscopy (ENDOR) observe protons of the axial water and on the drug fragments that reveal drug binding modes. Binding in CYP51B1 is complicated by the presence of multiple binding modes that coexist in the same solution. These results aid our understanding of CYP-inhibitor interactions and will help guide future inhibitor design.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System , Mycobacterium tuberculosis/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Catalytic Domain , Cytochrome P-450 Enzyme System/chemistry
2.
J Phys Chem A ; 120(36): 7071-9, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27585373

ABSTRACT

The manganese nitrate complex, [Mn(NO3)3](-), was generated via electrospray ionization and studied by tandem quadrupole mass spectrometry. The complex is assumed to decompose into [MnO(NO3)2](-) by elimination of NO2(•). The [MnO(NO3)2](-) product undergoes elimination of NO2(•) to yield [MnO2(NO3)](-), or elimination of NO(•) to yield [MnO3(NO3)](-). Both [MnO2(NO3)](-) and [MnO3(NO3)](-) yield [MnO4](-) via the transfer of oxygen atoms from the remaining nitrate ligand. The mechanism of permanganate formation is interesting because it can be generated through two competing pathways, and because the singlet ground state is spin-forbidden from the high-spin sextet [Mn(NO3)3](-) precursor. Theory and experiment suggest [MnO2(NO3)](-) is the major intermediate leading to formation of [MnO4](-). Theoretical studies show crossing from the high-spin to low-spin surface upon neutral oxygen atom transfer from the nitrate ligand in [MnO2(NO3)](-) allows formation of (1)[MnO4](-). Relative energy differences for the formation of (1)[MnO4](-) and (1)[MnO3](-) predicted by theory agree with experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...