Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
aBIOTECH ; 5(2): 169-183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974857

ABSTRACT

Robust genome editing technologies are becoming part of the crop breeding toolbox. Currently, genome editing is usually conducted either at a single locus, or multiple loci, in a variety at one time. Massively parallel genomics platforms, multifaceted genome editing capabilities, and flexible transformation systems enable targeted variation at nearly any locus, across the spectrum of genotypes within a species. We demonstrate here the simultaneous transformation and editing of many genotypes, by targeting mixed seed embryo explants with genome editing machinery, followed by re-identification through genotyping after plant regeneration. Transformation and Editing of Mixed Lines (TREDMIL) produced transformed individuals representing 101 of 104 (97%) mixed elite genotypes in soybean; and 22 of 40 (55%) and 9 of 36 (25%) mixed maize female and male elite inbred genotypes, respectively. Characterization of edited genotypes for the regenerated individuals identified over 800 distinct edits at the Determinate1 (Dt1) locus in samples from 101 soybean genotypes and 95 distinct Brown midrib3 (Bm3) edits in samples from 17 maize genotypes. These results illustrate how TREDMIL can help accelerate the development and deployment of customized crop varieties for future precision breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00173-5.

2.
Theor Appl Genet ; 118(3): 553-64, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18989654

ABSTRACT

Breeding for resistance to gray leaf spot, caused by Cercospora zeae-maydis (Cz) is paramount for many maize environments, in particular under warm and humid growing conditions. In this study, we mapped and characterized quantitative trait loci (QTL) involved in the resistance of maize against Cz. We confirmed the impact of the QTL on disease severity using near-isogenic lines (NILs), and estimated their effects on three major agronomic traits using their respective near isogenic hybrids (NIHs), which we obtained by crossing the NILs with an inbred from a complementary heterotic pool. We further validated three of the four QTL that were mapped using the Multiple Interval Mapping approach and showed LOD values>2.5. NILs genotype included all combinations between favorable alleles of the two QTL located in chromosome 1 (Q1 in bin 1.05 and Q2 in bin 1.07), and the allele in chromosome 3 (Q3 in bin 3.07). Each of the three QTL separately significantly reduced the severity of Cz. However, we found an unfavorable epistatic interaction between Q1 and Q2: presence of the favorable allele at one of the QTL allele effectively nullified the effect of the favorable allele at the other. In contrast, the interaction between Q2 and Q3 was additive, promoting the reduction of the severity to a greater extent than the sum of their individual effects. When evaluating the NIH we found significant individual effects for Q1 and Q3 on gray leaf spot severity, for Q2 on stalk lodging and grain yield, and for Q3 on grain moisture and stalk lodging. We detected significant epitasis between Q1 and Q2 for grain moisture and between Q1 and Q3 for stalk lodging. These results suggest that the combination of QTL impacts the effectiveness of marker-assisted selection procedures in commercial product development programs.


Subject(s)
Ascomycota , Plant Diseases/genetics , Quantitative Trait Loci , Zea mays/genetics , Chromosome Mapping , Epistasis, Genetic , Genetic Linkage , Genetic Markers , Genotype , Hybridization, Genetic , Immunity, Innate/genetics , Plant Diseases/microbiology , Zea mays/growth & development , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...