Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 47(4): 782-785, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35167524

ABSTRACT

Reservoir computing is a brain-inspired approach for information processing, well suited to analog implementations. We report a photonic implementation of a reservoir computer that exploits frequency domain multiplexing to encode neuron states. The system processes 25 comb lines simultaneously (i.e., 25 neurons), at a rate of 20 MHz. We illustrate performances on two standard benchmark tasks: channel equalization and time series forecasting. We also demonstrate that frequency multiplexing allows output weights to be implemented in the optical domain, through optical attenuation. We discuss the perspectives for high-speed, high-performance, low-footprint implementations.


Subject(s)
Neural Networks, Computer , Optics and Photonics , Computers , Neurons , Photons
2.
Opt Express ; 29(18): 28257-28276, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34614961

ABSTRACT

The optical domain is a promising field for the physical implementation of neural networks, due to the speed and parallelism of optics. Extreme learning machines (ELMs) are feed-forward neural networks in which only output weights are trained, while internal connections are randomly selected and left untrained. Here we report on a photonic ELM based on a frequency-multiplexed fiber setup. Multiplication by output weights can be performed either offline on a computer or optically by a programmable spectral filter. We present both numerical simulations and experimental results on classification tasks and a nonlinear channel equalization task.

3.
Phys Rev Lett ; 113(22): 223603, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25494072

ABSTRACT

We introduce and experimentally explore the concept of the non-Gaussian depth of single-photon states with a positive Wigner function. The depth measures the robustness of a single-photon state against optical losses. The directly witnessed quantum non-Gaussianity withstands significant attenuation, exhibiting a depth of 18 dB, while the nonclassicality remains unchanged. Quantum non-Gaussian depth is an experimentally approachable quantity that is much more robust than the negativity of the Wigner function. Furthermore, we use it to reveal significant differences between otherwise strongly nonclassical single-photon sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...